IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v155y2022ics0960077921010158.html
   My bibliography  Save this article

New non-traveling wave solutions for the (2+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa equation

Author

Listed:
  • Xu, Yuanqing
  • Zheng, Xiaoxiao
  • Xin, Jie

Abstract

In the paper, we mainly study the (2+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa equation (VC-DJKM equation) by combining the extended homoclinic test approach and the generalized variable separation method. Applying this thought and with the aid of symbolic computation, we present thirty six kinds of new exact non-traveling wave solutions of the (2+1)-dimensional VC-DJKM equation including kink-like solution, singular solitary wave-like solution, periodic solitary wave-like solution, kinky breather wave-like solution, and so on. These results all have a like-parabolic tail which reveals the complex structure of solution and maybe give a prediction of physical phenomenon. The generalized variable separation method greatly enriches the types and structures of solutions. Moreover, when some functions in the generalized variable separation form take 0 or 1, it will degenerate into the variable separation form of multiplication or addition. As the special case of VC-DJKM equation, the corresponding results of the (2+1)-dimensional DJKM equation with constant coefficients are also given.

Suggested Citation

  • Xu, Yuanqing & Zheng, Xiaoxiao & Xin, Jie, 2022. "New non-traveling wave solutions for the (2+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921010158
    DOI: 10.1016/j.chaos.2021.111661
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921010158
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111661?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shuxin Yang & Zhao Zhang & Biao Li, 2020. "Soliton Molecules and Some Novel Types of Hybrid Solutions to (2 + 1)-Dimensional Variable-Coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada Equation," Advances in Mathematical Physics, Hindawi, vol. 2020, pages 1-9, January.
    2. Ghazala Akram & Naila Sajid & Muhammad Abbas & Y. S. Hamed & Khadijah M. Abualnaja & Ahmet Ocak Akdemir, 2021. "Optical Solutions of the Date–Jimbo–Kashiwara–Miwa Equation via the Extended Direct Algebraic Method," Journal of Mathematics, Hindawi, vol. 2021, pages 1-18, July.
    3. Ma, Wen-Xiu, 2021. "N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 270-279.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Shailendra & Saha Ray, S., 2023. "Integrability and new periodic, kink-antikink and complex optical soliton solutions of (3+1)-dimensional variable coefficient DJKM equation for the propagation of nonlinear dispersive waves in inhomog," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuo, Chun-Ku, 2021. "A study on the resonant multi-soliton waves and the soliton molecule of the (3+1)-dimensional Kudryashov–Sinelshchikov equation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Sudao Bilige & Leilei Cui & Xiaomin Wang, 2023. "Superposition Formulas and Evolution Behaviors of Multi-Solutions to the (3+1)-Dimensional Generalized Shallow Water Wave-like Equation," Mathematics, MDPI, vol. 11(8), pages 1-12, April.
    3. Lü, Xing & Chen, Si-Jia, 2023. "N-soliton solutions and associated integrability for a novel (2+1)-dimensional generalized KdV equation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Yin, Yu-Hang & Lü, Xing, 2024. "Multi-parallelized PINNs for the inverse problem study of NLS typed equations in optical fiber communications: Discovery on diverse high-order terms and variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Rafiq, Muhammad Hamza & Raza, Nauman & Jhangeer, Adil, 2023. "Dynamic study of bifurcation, chaotic behavior and multi-soliton profiles for the system of shallow water wave equations with their stability," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    6. Yu, Weitian & Luan, Zitong & Zhang, Hongxin & Liu, Wenjun, 2022. "Collisions of three higher order dark double- and single-hump solitons in optical fiber," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Singh, Shailendra & Saha Ray, S., 2023. "Integrability and new periodic, kink-antikink and complex optical soliton solutions of (3+1)-dimensional variable coefficient DJKM equation for the propagation of nonlinear dispersive waves in inhomog," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Wen-Xiu Ma, 2022. "Riemann–Hilbert Problems and Soliton Solutions of Type ( λ ∗ , − λ ∗ ) Reduced Nonlocal Integrable mKdV Hierarchies," Mathematics, MDPI, vol. 10(6), pages 1-21, March.
    9. Sugati, Taghreed G. & Seadawy, Aly R. & Alharbey, R.A. & Albarakati, W., 2022. "Nonlinear physical complex hirota dynamical system: Construction of chirp free optical dromions and numerical wave solutions," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921010158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.