IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v156y2022ics0960077921011413.html
   My bibliography  Save this article

Nonlinear physical complex hirota dynamical system: Construction of chirp free optical dromions and numerical wave solutions

Author

Listed:
  • Sugati, Taghreed G.
  • Seadawy, Aly R.
  • Alharbey, R.A.
  • Albarakati, W.

Abstract

The Hirota dynamical system is a modified nonlinear Schrödinger equation (NLSE). It has time-delay corrections and higher-order dispersion to the cubic nonlinearity. It describe the propagation of wave in the optical fibers and ocean; it can be viewed as an approximation which is more accurate than the NLSE. We investigate the nonlinear generalized higher-order Hirota equation, for certain ultrashort optical pulses propagating in a nonlinear inhomogeneous fiber. By implementing variational principle and computational techniques, we obtained chirp optical and numerical wave solutions. Furthermore, the existence, uniqueness and stability are studied for this model.

Suggested Citation

  • Sugati, Taghreed G. & Seadawy, Aly R. & Alharbey, R.A. & Albarakati, W., 2022. "Nonlinear physical complex hirota dynamical system: Construction of chirp free optical dromions and numerical wave solutions," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077921011413
    DOI: 10.1016/j.chaos.2021.111788
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921011413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111788?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoseini, S.M. & Marchant, T.R., 2009. "Soliton perturbation theory for a higher order Hirota equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(4), pages 770-778.
    2. Kudryashov, Nikolai A., 2005. "Simplest equation method to look for exact solutions of nonlinear differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1217-1231.
    3. Ma, Wen-Xiu, 2021. "N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 270-279.
    4. Kovalyov, Mikhail, 2007. "Uncertainty principle for the nonlinear waves of the Korteweg–de Vries equation," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 431-444.
    5. Weiguo Zhang & Xingqian Ling & Bei-Bei Wang & Shaowei Li, 2020. "Solitary and Periodic Wave Solutions of Sasa–Satsuma Equation and Their Relationship with Hamilton Energy," Complexity, Hindawi, vol. 2020, pages 1-17, April.
    6. Kovalyov, Mikhail & Bica, Ion, 2005. "Some properties of slowly decaying oscillatory solutions of KP," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 979-989.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arzu Akbulut & Melike Kaplan & Rubayyi T. Alqahtani & W. Eltayeb Ahmed, 2023. "On the Dynamics of the Complex Hirota-Dynamical Model," Mathematics, MDPI, vol. 11(23), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sudao Bilige & Leilei Cui & Xiaomin Wang, 2023. "Superposition Formulas and Evolution Behaviors of Multi-Solutions to the (3+1)-Dimensional Generalized Shallow Water Wave-like Equation," Mathematics, MDPI, vol. 11(8), pages 1-12, April.
    2. Lü, Xing & Chen, Si-Jia, 2023. "N-soliton solutions and associated integrability for a novel (2+1)-dimensional generalized KdV equation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Kuo, Chun-Ku, 2021. "A study on the resonant multi-soliton waves and the soliton molecule of the (3+1)-dimensional Kudryashov–Sinelshchikov equation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Yin, Yu-Hang & Lü, Xing, 2024. "Multi-parallelized PINNs for the inverse problem study of NLS typed equations in optical fiber communications: Discovery on diverse high-order terms and variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Innocent Simbanefayi & Chaudry Masood Khalique, 2020. "Group Invariant Solutions and Conserved Quantities of a (3+1)-Dimensional Generalized Kadomtsev–Petviashvili Equation," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    6. Fahmy, E.S., 2008. "Travelling wave solutions for some time-delayed equations through factorizations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1209-1216.
    7. Mustafa Inc & Rubayyi T. Alqahtani & Ravi P. Agarwal, 2023. "W-Shaped Bright Soliton of the (2 + 1)-Dimension Nonlinear Electrical Transmission Line," Mathematics, MDPI, vol. 11(7), pages 1-13, April.
    8. Chaudry Masood Khalique & Karabo Plaatjie, 2021. "Symmetry Methods and Conservation Laws for the Nonlinear Generalized 2D Equal-Width Partial Differential Equation of Engineering," Mathematics, MDPI, vol. 10(1), pages 1-17, December.
    9. Yang, Lijuan & Du, Xianyun & Yang, Qiongfen, 2016. "New variable separation solutions to the (2 + 1)-dimensional Burgers equation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1271-1275.
    10. Xu, Yuanqing & Zheng, Xiaoxiao & Xin, Jie, 2022. "New non-traveling wave solutions for the (2+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    11. Zayed, E.M.E. & Alurrfi, K.A.E., 2016. "Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 111-131.
    12. Rafiq, Muhammad Hamza & Raza, Nauman & Jhangeer, Adil, 2023. "Dynamic study of bifurcation, chaotic behavior and multi-soliton profiles for the system of shallow water wave equations with their stability," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    13. Andrei D. Polyanin, 2019. "Comparison of the Effectiveness of Different Methods for Constructing Exact Solutions to Nonlinear PDEs. Generalizations and New Solutions," Mathematics, MDPI, vol. 7(5), pages 1-19, April.
    14. Kudryashov, Nikolay A. & Ryabov, Pavel N., 2014. "Exact solutions of one pattern formation model," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1090-1093.
    15. Zdravković, S. & Zeković, S. & Bugay, A.N. & Petrović, J., 2021. "Two component model of microtubules and continuum approximation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    16. Navickas, Z. & Ragulskis, M. & Telksnys, T., 2016. "Existence of solitary solutions in a class of nonlinear differential equations with polynomial nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 333-338.
    17. Nikolay A. Kudryashov & Sofia F. Lavrova, 2024. "Painlevé Analysis of the Traveling Wave Reduction of the Third-Order Derivative Nonlinear Schrödinger Equation," Mathematics, MDPI, vol. 12(11), pages 1-13, May.
    18. Yu, Weitian & Luan, Zitong & Zhang, Hongxin & Liu, Wenjun, 2022. "Collisions of three higher order dark double- and single-hump solitons in optical fiber," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    19. Nickel, J., 2007. "Travelling wave solutions to the Kuramoto–Sivashinsky equation," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1376-1382.
    20. Petar Popivanov & Angela Slavova, 2024. "Some Non-Linear Evolution Equations and Their Explicit Smooth Solutions with Exponential Growth Written into Integral Form," Mathematics, MDPI, vol. 12(7), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077921011413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.