IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924003989.html
   My bibliography  Save this article

Dark and antidark solitons on continuous and doubly periodic backgrounds in the space-shifted nonlocal nonlinear Schrödinger equation

Author

Listed:
  • Rao, Jiguang
  • Mihalache, Dumitru
  • Zhou, Fang
  • He, Jingsong
  • Chen, Sheng-An

Abstract

In the framework of the space-shifted nonlocal nonlinear Schrödinger equation, the dark and antidark soliton solutions on both continuous and doubly periodic backgrounds are studied in detail. By performing the long-time asymptotic analysis of the analytic solutions, three key properties of these solitons on continuous background are thoroughly investigated: (i) The explicit classifications of solitons in accordance with their states are provided; (ii) The essential distinctions between these nonlocal solitons and the associated local solitons are identified by examining the correlations of their amplitudes and velocities; (iii) The role of the shifting factor x0 in these solitons is elucidated. A particular solution family showcasing multiple periodic waves with periodicity along both the x and t dimensions is investigated. Specifically, these doubly periodic waves are transformed into the algebraic solitons as their periods tend to infinity. The asymptotic analysis concerning t→±∞ is also conducted for the dark and antidark solitons on doubly periodic background, and reveal two unique soliton properties: (i) The specific parameter governing the amplitudes of periodic waves, unrelated to soliton solutions on continuous background, can convert the solitons from dark states to antidark states or antidark states to dark states; (ii) The amplitudes of the solitons exhibit irregular oscillatory periodicity along t, rather than regular periodicity.

Suggested Citation

  • Rao, Jiguang & Mihalache, Dumitru & Zhou, Fang & He, Jingsong & Chen, Sheng-An, 2024. "Dark and antidark solitons on continuous and doubly periodic backgrounds in the space-shifted nonlocal nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003989
    DOI: 10.1016/j.chaos.2024.114846
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924003989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114846?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Velasco-Juan, M. & Fujioka, J., 2022. "Lagrangian nonlocal nonlinear Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Malomed, B.A., 2022. "Multidimensional dissipative solitons and solitary vortices," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    3. Ma, Wen-Xiu, 2024. "Binary Darboux transformation of vector nonlocal reverse-time integrable NLS equations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    4. Wu, Jianping, 2024. "Spectral structures and soliton dynamical behaviors of two shifted nonlocal NLS equations via a novel Riemann–Hilbert approach: A reverse-time NLS equation and a reverse-spacetime NLS equation," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Liangwei & Fan, Mingjing & Malomed, Boris A., 2024. "Stable higher-order vortex quantum droplets in an annular potential," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    2. Cui, Xiao-Qi & Wen, Xiao-Yong & Li, Zai-Dong, 2024. "Magnetization reversal phenomenon of higher-order lump and mixed interaction structures on periodic background in the (2+1)-dimensional Heisenberg ferromagnet spin equation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Kudryashov, Nikolay A. & Kutukov, Aleksandr A. & Biswas, Anjan & Zhou, Qin & Yıldırım, Yakup & Alshomrani, Ali Saleh, 2023. "Optical solitons for the concatenation model: Power-law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    4. Otajonov, Sherzod R. & Umarov, Bakhram A. & Abdullaev, Fatkhulla Kh., 2024. "Dynamics of quasi-one-dimensional quantum droplets in Bose–Bose mixtures," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    5. Signé, Eric Martial & Djazet, Alain & Megne, Laure Tiam & Djoko, Martin & Fewo, Serge I. & Kofané, Timoléon C., 2024. "Light beams of the (3+1)D complex Ginzburg–Landau equation induced by the interaction between the external potential and higher-order nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    6. Chen, Junbo & Mihalache, Dumitru & Belić, Milivoj R. & Gao, Xuzhen & Zhu, Danfeng & Deng, Dingnan & Qiu, Shaobin & Zhu, Xing & Zeng, Liangwei, 2024. "Composite solitons in spin–orbit-coupled Bose–Einstein condensates within optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    7. Hanqing Zhao & Boris A. Malomed & Ivan I. Smalyukh, 2023. "Topological solitonic macromolecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Djazet, Alain & Fewo, Serge I. & Djoko, Martin & Felenou, E. Tchomgo & Kofané, Timoléon C., 2023. "Extension of the stability criterion for dissipative vector solitons of a laser coupled two-dimensional Ginzburg–Landau Equation generated from vector asymmetric inputs," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    9. Wang, Qing & Zhu, Junying & Wang, Jun & Yu, Haiyan & Hu, Beibei, 2024. "Controllable trajectory and shape of Hermite-Gaussian soliton clusters," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    10. Han, Peng-Fei & Zhang, Yi, 2024. "Investigation of shallow water waves near the coast or in lake environments via the KdV–Calogero–Bogoyavlenskii–Schiff equation," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    11. Chen, Zhiming & Liu, Xiuye & Xie, Hongqiang & Zeng, Jianhua, 2024. "Three-dimensional Bose–Einstein gap solitons in optical lattices with fractional diffraction," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    12. Mahfoudi, Narimene & Bouguerra, Abdesselam & Triki, Houria & Azzouzi, Faiçal & Biswas, Anjan & Yıldırım, Yakup & Alshomrani, Ali Saleh, 2024. "Chirped self-similar optical solitons with cubic–quintic–septic–nonic form of self-phase modulation," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    13. Li, Chunyan & Konotop, Vladimir V. & Malomed, Boris A. & Kartashov, Yaroslav V., 2023. "Bound states in Bose-Einstein condensates with radially-periodic spin-orbit coupling," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    14. Liu, Dongshuai & Gao, Yanxia & Fan, Dianyuan & Zhang, Lifu, 2023. "Higher-charged vortex solitons in harmonic potential," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    15. Xu, Yinshen & Li, Peixin & Mihalache, Dumitru & He, Jingsong, 2023. "Resonant collisions among multi-breathers in the Mel’nikov system," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    16. Al-Marzoug, S.M. & Baizakov, B.B. & Bahlouli, H., 2023. "Two-dimensional symbiotic solitons and quantum droplets in a quasi-one-dimensional optical lattice," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    17. Manoj Mishra & Kirti Meena & Divya Yadav & Brajraj Singh & Soumendu Jana, 2023. "The dynamics, stability and modulation instability of Gaussian beams in nonlocal nonlinear media," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(8), pages 1-13, August.
    18. Díaz, P. & Molinares, H. & Pérez, L.M. & Laroze, D. & Bragard, J. & Malomed, B.A., 2024. "Stable semivortex gap solitons in a spin–orbit-coupled Fermi gas," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    19. Wang, Qing & Zhou, Liangliang & Zhu, Junying & He, Jun-Rong, 2024. "Multi-vortex beams in nonlinear media with harmonic potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    20. Yakup Yıldırım & Anjan Biswas & Luminita Moraru & Abdulah A. Alghamdi, 2023. "Quiescent Optical Solitons for the Concatenation Model with Nonlinear Chromatic Dispersion," Mathematics, MDPI, vol. 11(7), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.