IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924010920.html
   My bibliography  Save this article

Ferroelectric frontiers: Navigating phase portraits, chaos, multistability and sensitivity in thin-film dynamics

Author

Listed:
  • Jhangeer, Adil
  • Beenish,

Abstract

This research includes the study of the non-linear dynamics of thin-film ferroelectric materials governed by an equation of wave dynamics within the material. This equation plays a key role in both physics and the study of aqueous flow. The work is planned as examining the symmetries group analysis drops, studying the dynamical system features through bifurcation phase portraits, and carrying dynamic phenomena in chaos theory. Diverse techniques are taken, such as Lyapunov exponent, 2D, and 3D phase portraits, Poincaré maps, time series analysis, and sensitivity to multistability under the different conditions of the initial state. In addition, the study involves using the extended hyperbolic function method to obtain the general analytical solutions via which various kinds of solitary wave solutions are produced including trigonometric and hyperbolic functions and periodic, bright, and singular soliton solutions. These solutions are followed by a list of constraint conditions in the form of equations. Visual data of 2D, 3D, and contour plots are presented, with parameters carefully set to reflect various scenarios. Sensitivity analysis is performed using alternative initial conditions, and stability analysis is demonstrated graphically. To fully grasp the dynamic features of these systems and accurately predict outcomes, it is essential to advance new technologies and methodologies that can further enhance our understanding and predictive capabilities in complex systems.

Suggested Citation

  • Jhangeer, Adil & Beenish,, 2024. "Ferroelectric frontiers: Navigating phase portraits, chaos, multistability and sensitivity in thin-film dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010920
    DOI: 10.1016/j.chaos.2024.115540
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924010920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115540?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.