IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924007677.html
   My bibliography  Save this article

Nonlinear discrete-time observers with Physics-Informed Neural Networks

Author

Listed:
  • Vargas Alvarez, Hector
  • Fabiani, Gianluca
  • Kazantzis, Nikolaos
  • Kevrekidis, Ioannis G.
  • Siettos, Constantinos

Abstract

We use physics-informed neural networks (PINNs) to numerically solve the discrete-time nonlinear observer-based state estimation problem. Integrated within a single-step exact observer linearization framework, the proposed PINN approach aims at learning a nonlinear state transformation operator by solving a system of functional equations. The performance of the proposed approach is assessed via two illustrative case studies, for which the observer linearizing transformation operator can be derived analytically. We also perform an uncertainty quantification analysis for the proposed scheme. The performance and numerical approximation accuracy of the proposed scheme is compared with conventional power-series numerical implementation.

Suggested Citation

  • Vargas Alvarez, Hector & Fabiani, Gianluca & Kazantzis, Nikolaos & Kevrekidis, Ioannis G. & Siettos, Constantinos, 2024. "Nonlinear discrete-time observers with Physics-Informed Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007677
    DOI: 10.1016/j.chaos.2024.115215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924007677
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gianluca Fabiani & Nikolaos Evangelou & Tianqi Cui & Juan M. Bello-Rivas & Cristina P. Martin-Linares & Constantinos Siettos & Ioannis G. Kevrekidis, 2024. "Task-oriented machine learning surrogates for tipping points of agent-based models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Enrico Schiassi & Mario De Florio & Andrea D’Ambrosio & Daniele Mortari & Roberto Furfaro, 2021. "Physics-Informed Neural Networks and Functional Interpolation for Data-Driven Parameters Discovery of Epidemiological Compartmental Models," Mathematics, MDPI, vol. 9(17), pages 1-17, August.
    3. Bethany Lusch & J. Nathan Kutz & Steven L. Brunton, 2018. "Deep learning for universal linear embeddings of nonlinear dynamics," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalmykov, N.I. & Zagidullin, R. & Rogov, O.Y. & Rykovanov, S. & Dylov, D.V., 2024. "Suppressing modulation instability with reinforcement learning," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    2. Ding, Jiaqi & Zhao, Pu & Liu, Changjun & Wang, Xiaofang & Xie, Rong & Liu, Haitao, 2024. "From irregular to continuous: The deep Koopman model for time series forecasting of energy equipment," Applied Energy, Elsevier, vol. 364(C).
    3. Chen, Zhong & Chen, Xiaofang & Liu, Jinping & Cen, Lihui & Gui, Weihua, 2024. "Learning model predictive control of nonlinear systems with time-varying parameters using Koopman operator," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    4. Konstantin Avchaciov & Marina P. Antoch & Ekaterina L. Andrianova & Andrei E. Tarkhov & Leonid I. Menshikov & Olga Burmistrova & Andrei V. Gudkov & Peter O. Fedichev, 2022. "Unsupervised learning of aging principles from longitudinal data," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Garmaev, Sergei & Fink, Olga, 2024. "Deep Koopman Operator-based degradation modelling," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    6. Gong, Xun & Wang, Xiaozhe & Cao, Bo, 2023. "On data-driven modeling and control in modern power grids stability: Survey and perspective," Applied Energy, Elsevier, vol. 350(C).
    7. Rijwan Khan, 2023. "Deep Learning System and It’s Automatic Testing: An Approach," Annals of Data Science, Springer, vol. 10(4), pages 1019-1033, August.
    8. Mallen, Alex T. & Lange, Henning & Kutz, J. Nathan, 2024. "Deep Probabilistic Koopman: Long-term time-series forecasting under periodic uncertainties," International Journal of Forecasting, Elsevier, vol. 40(3), pages 859-868.
    9. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    10. Zequn Lin & Zhaofan Lu & Zengru Di & Ying Tang, 2024. "Learning noise-induced transitions by multi-scaling reservoir computing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Mandal, Ankit & Tiwari, Yash & Panigrahi, Prasanta K. & Pal, Mayukha, 2022. "Physics aware analytics for accurate state prediction of dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    12. Mattia Cenedese & Joar Axås & Bastian Bäuerlein & Kerstin Avila & George Haller, 2022. "Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Miao, Hua & Zhu, Wei & Dan, Yuanhong & Yu, Nanxiang, 2024. "Chaotic time series prediction based on multi-scale attention in a multi-agent environment," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    14. Zhao Chen & Yang Liu & Hao Sun, 2021. "Physics-informed learning of governing equations from scarce data," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    15. Gholaminejad, Tahereh & Khaki-Sedigh, Ali, 2022. "Stable deep Koopman model predictive control for solar parabolic-trough collector field," Renewable Energy, Elsevier, vol. 198(C), pages 492-504.
    16. Yassopoulos, Christopher & Reddy, J.N. & Mortari, Daniele, 2023. "Analysis of nonlinear Timoshenko–Ehrenfest beam problems with von Kármán nonlinearity using the Theory of Functional Connections," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 709-744.
    17. Joaquim Fernando Pinto da Costa & Manuel Cabral, 2022. "Statistical Methods with Applications in Data Mining: A Review of the Most Recent Works," Mathematics, MDPI, vol. 10(6), pages 1-22, March.
    18. Cardoso, Ana Sofia & Renna, Francesco & Moreno-Llorca, Ricardo & Alcaraz-Segura, Domingo & Tabik, Siham & Ladle, Richard J. & Vaz, Ana Sofia, 2022. "Classifying the content of social media images to support cultural ecosystem service assessments using deep learning models," Ecosystem Services, Elsevier, vol. 54(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.