IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v487y2025ics0096300324005290.html
   My bibliography  Save this article

Data-driven predictor of control-affine nonlinear dynamics: Finite discrete-time bilinear approximation of koopman operator

Author

Listed:
  • Iman, Sara
  • Jahed-Motlagh, Mohammad-Reza

Abstract

This paper introduces a novel and efficient data-driven approach for approximating a finite discrete-time bilinear model of control affine nonlinear dynamical systems with a tunable parameter that balances model dimension and prediction accuracy. An approximation of the Koopman operator based on the evolutions of the nonlinear system measurements used to lift a control-affine nonlinear system to a higher dimensional model. However, higher dimensional spaces can result in a long learning time and the curse of dimensionality in control analysis. The proposed approach addresses these challenges by introducing a convex optimization which identifies informative observable functions. This technique allows for the adjustment of a parameter to strike a balance between model dimension and accuracy in prediction. The main contribution of this study is to introduce a reduced dimensional bilinear model for a nonlinear complex system. This achievement is made possible by implementing convex sparse optimization, enabling the exploration of informative estimated Koopman eigenfunctions while minimizing the number of system measurements required. The optimization problem is solved using the alternating direction method of multipliers. The effectiveness of the proposed method is evaluated on three different nonlinear systems: a numerical nonlinear system, a Van der Pol oscillator, and a Duffing oscillator. In the last simulation, an estimation of the Koopman linear model is considered as a special case, and the policy iteration algorithm is employed to evaluate optimal control designed for different reduced-dimensional models.

Suggested Citation

  • Iman, Sara & Jahed-Motlagh, Mohammad-Reza, 2025. "Data-driven predictor of control-affine nonlinear dynamics: Finite discrete-time bilinear approximation of koopman operator," Applied Mathematics and Computation, Elsevier, vol. 487(C).
  • Handle: RePEc:eee:apmaco:v:487:y:2025:i:c:s0096300324005290
    DOI: 10.1016/j.amc.2024.129068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324005290
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:487:y:2025:i:c:s0096300324005290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.