IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v179y2024ics0960077923013152.html
   My bibliography  Save this article

Medium inhomogeneities modulate emerging spiral waves

Author

Listed:
  • Nezhad Hajian, Dorsa
  • Parastesh, Fatemeh
  • Jafari, Sajad
  • Perc, Matjaž
  • Klemenčič, Eva

Abstract

We study the spatiotemporal dynamics of spiral waves in a lattice of chemically coupled memristive FitzHugh–Nagumo neurons. We also introduce local and global functional inhomogeneities by means of variations in nodal action potentials that are distributed in different ways. We find that, in the presence of globally distributed random inhomogeneity, increasing the maximum threshold for excitability generates neurons with reduced depolarization capacity. Although such a setup makes the entire medium less excitable and thus challenges the robustness of emerging spiral waves, highly excitable neurons can compensate for the less excitable ones, thereby nonetheless preserving the spiral wave pattern. However, this compensatory mechanism has limitations, which can ultimately lead to the elimination of spiral waves under specific conditions. When inhomogeneities are local, two different scenarios are possible. If the distribution is random, the spiral tip cannot penetrate the inhomogeneous region but remains resilient against it. The tip is consistently anchored to the inhomogeneity, meandering around its boundary. As the inhomogeneity size increases, the curvature of the spiral tip and the propagation speed of the circular wavefronts decrease. If the distribution is uniform, inhomogeneities are analogous to semi-conducting barriers, thus permitting the spiral rotor to penetrate while sacrificing the strength of its wavefronts.

Suggested Citation

  • Nezhad Hajian, Dorsa & Parastesh, Fatemeh & Jafari, Sajad & Perc, Matjaž & Klemenčič, Eva, 2024. "Medium inhomogeneities modulate emerging spiral waves," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:chsofr:v:179:y:2024:i:c:s0960077923013152
    DOI: 10.1016/j.chaos.2023.114413
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923013152
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mesin, Luca, 2012. "Dynamics of spiral waves in a cardiac electromechanical model with a local electrical inhomogeneity," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1220-1230.
    2. Francis X. Witkowski & L. Joshua Leon & Patricia A. Penkoske & Wayne R. Giles & Mark L. Spano & William L. Ditto & Arthur T. Winfree, 1998. "Spatiotemporal evolution of ventricular fibrillation," Nature, Nature, vol. 392(6671), pages 78-82, March.
    3. Ma, Jun & Wang, Ya & Wang, Chunni & Xu, Ying & Ren, Guodong, 2017. "Mode selection in electrical activities of myocardial cell exposed to electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 219-225.
    4. Ding, Qianming & Wu, Yong & Hu, Yipeng & Liu, Chaoyue & Hu, Xueyan & Jia, Ya, 2023. "Tracing the elimination of reentry spiral waves in defibrillation: Temperature effects," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Etémé, A.S. & Tabi, C.B. & Mohamadou, A. & Kofané, T.C., 2019. "Elimination of spiral waves in a two-dimensional Hindmarsh–Rose neural network under long-range interaction effect and frequency excitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    6. Wang, Zhen & Rostami, Zahra & Jafari, Sajad & Alsaadi, Fawaz E. & Slavinec, Mitja & Perc, Matjaž, 2019. "Suppression of spiral wave turbulence by means of periodic plane waves in two-layer excitable media," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 229-233.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Nabulsi, Rami Ahmad & Anukool, Waranont, 2024. "Spiral waves in fractal dimensions and their elimination in λ − ω systems with less damaging intervention," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Hu, Yipeng & Ding, Qianming & Wu, Yong & Jia, Ya, 2023. "Polarized electric field-induced drift of spiral waves in discontinuous cardiac media," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    3. Li, Fan, 2020. "Effect of field coupling on the wave propagation in the neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Luo, Hao-jie & Xue, Yu & Huang, Mu-yang & Zhang, Qiang & Zhang, Kun, 2024. "Pattern and waves on 2D-Kuramoto model with many-body interactions," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    5. Gois, Sandra R.F.S.M. & Savi, Marcelo A., 2009. "An analysis of heart rhythm dynamics using a three-coupled oscillator model," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2553-2565.
    6. Guo, Shengli & Xu, Ying & Wang, Chunni & Jin, Wuyin & Hobiny, Aatef & Ma, Jun, 2017. "Collective response, synapse coupling and field coupling in neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 120-127.
    7. Kaijun Wu & Jiawei Li, 2023. "Effects of high–low-frequency electromagnetic radiation on vibrational resonance in FitzHugh–Nagumo neuronal systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(9), pages 1-19, September.
    8. Rajagopal, Karthikeyan & Jafari, Sajad & Li, Chunbiao & Karthikeyan, Anitha & Duraisamy, Prakash, 2021. "Suppressing spiral waves in a lattice array of coupled neurons using delayed asymmetric synapse coupling," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Soling Zimik & Rahul Pandit & Rupamanjari Majumder, 2020. "Anisotropic shortening in the wavelength of electrical waves promotes onset of electrical turbulence in cardiac tissue: An in silico study," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-14, March.
    10. Ding, Qianming & Wu, Yong & Hu, Yipeng & Liu, Chaoyue & Hu, Xueyan & Jia, Ya, 2023. "Tracing the elimination of reentry spiral waves in defibrillation: Temperature effects," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    11. Wang, Xueqin & Yu, Dong & Li, Tianyu & Jia, Ya, 2023. "Logistic stochastic resonance in the Hodgkin–Huxley neuronal system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    12. Xu, Ying & Jia, Ya & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir, 2017. "Synchronization between neurons coupled by memristor," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 435-442.
    13. Rajagopal, Karthikeyan & Karthikeyan, Anitha, 2022. "Spiral waves and their characterization through spatioperiod and spatioenergy under distinct excitable media," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    14. Nazimuddin, A.K.M. & Kabir, M. Humayun & Gani, M. Osman, 2023. "Spiral patterns and numerical bifurcation analysis in a three-component Brusselator model for chemical reactions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 577-591.
    15. Li, Fan & Liu, Shuai & Li, Xiaola, 2022. "Pattern selection in thermosensitive neuron network induced by noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    16. Karthikeyan, Anitha & Moroz, Irene & Rajagopal, Karthikeyan & Duraisamy, Prakash, 2021. "Effect of temperature sensitive ion channels on the single and multilayer network behavior of an excitable media with electromagnetic induction," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    17. Rupamanjari Majumder & Alok Ranjan Nayak & Rahul Pandit, 2011. "Scroll-Wave Dynamics in Human Cardiac Tissue: Lessons from a Mathematical Model with Inhomogeneities and Fiber Architecture," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-21, April.
    18. Yao, Chenggui & Sun, JianQiang & Jin, Jun & Shuai, Jianwei & Li, Xiang & Yao, Yuangen & Xu, Xufan, 2023. "The power law statistics of the spiking timing in a neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    19. Zhang, Yiling & Yuan, Guoyong & Liu, Jun & Shi, Jifang & Wang, Guangrui & Chen, Shaoying, 2023. "Spiral dynamics in oscillatory bilayer systems with an inhomogeneous inter-layer coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    20. Yuan, Guoyong & Liu, Pengwei & Shi, Jifang & Wang, Guangrui, 2023. "Dynamics and control of spiral waves under feedback derived from a moving measuring point," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:179:y:2024:i:c:s0960077923013152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.