IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v34y2007i2p307-315.html
   My bibliography  Save this article

Binary collisions between wave-fragments in a sub-excitable Belousov–Zhabotinsky medium

Author

Listed:
  • Adamatzky, Andrew
  • Costello, Benjamin de Lacy

Abstract

In numerical studies we describe the phenomenology of interactions between localized, shape-preserving, wave-fragments in the sub-excitable Belousov–Zhabotinsky medium and build a representative catalog of wave-fragment collisions that include annihilation, fusion, and quasi-elastic types. We envisage the phenomena discovered will be used in signal tuning and general programming of collision-based [Adamatzky A, editor, Collision-based computing. Springer-Verlag, 2002] excitable chemical computers.

Suggested Citation

  • Adamatzky, Andrew & Costello, Benjamin de Lacy, 2007. "Binary collisions between wave-fragments in a sub-excitable Belousov–Zhabotinsky medium," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 307-315.
  • Handle: RePEc:eee:chsofr:v:34:y:2007:i:2:p:307-315
    DOI: 10.1016/j.chaos.2006.03.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906002864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.03.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Lacy Costello, Benjamin & Adamatzky, Andrew, 2005. "Experimental implementation of collision-based gates in Belousov–Zhabotinsky medium," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 535-544.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adamatzky, Andrew & Holley, Julian & Bull, Larry & De Lacy Costello, Ben, 2011. "On computing in fine-grained compartmentalised Belousov–Zhabotinsky medium," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 779-790.
    2. Toth, Rita & Stone, Christopher & Adamatzky, Andrew & de Lacy Costello, Ben & Bull, Larry, 2009. "Experimental validation of binary collisions between wave fragments in the photosensitive Belousov–Zhabotinsky reaction," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1605-1615.
    3. Sebastian, Anupama & Sibeesh, Puthiyapurayil & Amrutha, S.V. & Punacha, Shreyas & Shajahan, T.K., 2024. "Effect of electric field chirality on the unpinning of chemical waves in the Belousov–Zhabotinsky reaction," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    4. Adamatzky, Andrew, 2009. "Localizations in cellular automata with mutualistic excitation rules," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 981-1003.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Zhen & Adam, Zachary R., 2024. "Two mechanisms for the spontaneous emergence, execution, and reprogramming of chemical logic circuits," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    2. Soun, L. & Alfaro-Bittner, K. & Clerc, M.G. & Barbay, S., 2022. "Computing using pulse collisions in lattices of excitable microlasers," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Adamatzky, Andrew & Wuensche, Andrew & De Lacy Costello, Benjamin, 2006. "Glider-based computing in reaction-diffusion hexagonal cellular automata," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 287-295.
    4. Toth, Rita & Stone, Christopher & Adamatzky, Andrew & de Lacy Costello, Ben & Bull, Larry, 2009. "Experimental validation of binary collisions between wave fragments in the photosensitive Belousov–Zhabotinsky reaction," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1605-1615.
    5. Zhang, Liang & Adamatzky, Andrew, 2009. "Collision-based implementation of a two-bit adder in excitable cellular automaton," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1191-1200.
    6. Adamatzky, Andrew, 2009. "Localizations in cellular automata with mutualistic excitation rules," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 981-1003.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:34:y:2007:i:2:p:307-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.