IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v185y2024ics0960077924006787.html
   My bibliography  Save this article

LMFLS: A new fast local multi-factor node scoring and label selection-based algorithm for community detection

Author

Listed:
  • Li, Huxiong
  • Nasab, Samaneh Salehi
  • Roghani, Hamid
  • Roghani, Parya
  • Gheisari, Mehdi
  • Fernández-Campusano, Christian
  • Abbasi, Aaqif Afzaal
  • Wu, Zongda

Abstract

Community detection is still regarded as one of the most applicable approaches for discovering latent information in complex networks. To meet the needs of processing large networks in today's world, it is important to propose fast methods that have low execution time and fast convergence speed, while maintaining algorithmic accuracy. To overcome these issues, a fast local multi-factor node scoring and label selection-based (LMFLS) method with low time complexity and fast convergence is proposed. Node scoring step incorporates diverse metrics to better assess impact of nodes from different aspects and obtain more meaningful order of nodes. In second step, to construct and stabilize initial structure of communities, an efficient label assignment technique based on the selection of the most similar neighbor is suggested. Moreover, two label selection strategies are proposed to significantly enhance the accuracy and improve convergence of the algorithm. During the label selection step, each node in graph tends to choose the most appropriate label based on a multi-criteria label influence from its surrounding nodes. Finally, by utilizing a novel merge method, small group of nodes are merged to form the final communities. Meanwhile, since drug repositioning is one of the popular research fields in therapeutics, to extend the application of the proposed algorithm in practical context, the LMFLS algorithm is applied on Drug-Drug network to find potential repositioning for drugs. Thorough experiments are conducted on both actual real-world networks and synthetic networks to assess the algorithm's performance and accuracy. The findings demonstrate that the proposed method outperforms state-of-the-art algorithms in terms of both accuracy and execution time.

Suggested Citation

  • Li, Huxiong & Nasab, Samaneh Salehi & Roghani, Hamid & Roghani, Parya & Gheisari, Mehdi & Fernández-Campusano, Christian & Abbasi, Aaqif Afzaal & Wu, Zongda, 2024. "LMFLS: A new fast local multi-factor node scoring and label selection-based algorithm for community detection," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924006787
    DOI: 10.1016/j.chaos.2024.115126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924006787
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saoud, Bilal & Moussaoui, Abdelouahab, 2018. "Node similarity and modularity for finding communities in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1958-1966.
    2. Sun, Heli & Liu, Jiao & Huang, Jianbin & Wang, Guangtao & Yang, Zhou & Song, Qinbao & Jia, Xiaolin, 2015. "CenLP: A centrality-based label propagation algorithm for community detection in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 767-780.
    3. Wang, Tao & Chen, Shanshan & Wang, Xiaoxia & Wang, Jinfang, 2020. "Label propagation algorithm based on node importance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    4. Tasgin, Mursel & Bingol, Haluk O., 2019. "Community detection using boundary nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 315-324.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhe Cheng & Yihuan Zou & Yueyang Zheng, 2024. "A method for identifying different types of university research teams," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    2. Steffi Siegert & Mikael Holmgren Caicedo & Maria Mårtensson Hansson, 2020. "Boundaryless Twitter Use: On the Affordances of Social Media," Social Sciences, MDPI, vol. 9(11), pages 1-18, November.
    3. Wang, Ying & Zheng, Yunan & Shi, Xuelei & Liu, Yiguang, 2022. "An effective heuristic clustering algorithm for mining multiple critical nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    4. Hesamipour, Sajjad & Balafar, Mohammad Ali, 2019. "A new method for detecting communities and their centers using the Adamic/Adar Index and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    5. Liu, Qiang & Zhu, Yu-Xiao & Jia, Yan & Deng, Lu & Zhou, Bin & Zhu, Jun-Xing & Zou, Peng, 2018. "Leveraging local h-index to identify and rank influential spreaders in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 379-391.
    6. Garza, Sara E. & Schaeffer, Satu Elisa, 2019. "Community detection with the Label Propagation Algorithm: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    7. Aghaalizadeh, Saeid & Afshord, Saeid Taghavi & Bouyer, Asgarali & Anari, Babak, 2021. "A three-stage algorithm for local community detection based on the high node importance ranking in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    8. Zhang, Weitong & Zhang, Rui & Shang, Ronghua & Li, Juanfei & Jiao, Licheng, 2019. "Application of natural computation inspired method in community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 130-150.
    9. Wu, Liuyi & Dong, Lijun & Wang, Yi & Zhang, Feng & Lee, Victor E. & Kang, Xiaojun & Liang, Qingzhong, 2018. "Uniform-scale assessment of role minimization in bipartite networks and its application to access control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 381-397.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924006787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.