IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v492y2018icp1958-1966.html
   My bibliography  Save this article

Node similarity and modularity for finding communities in networks

Author

Listed:
  • Saoud, Bilal
  • Moussaoui, Abdelouahab

Abstract

Community detection in networks has become a very important axis of research for understanding the structure of networks. Several methods have been proposed to detect the most optimal community structure in networks. In this article, we present a novel method for detecting community structure ComDBNS (Community Detection Based on Node Similarity) for unweighted and undirected networks; it performs in two steps. The first step uses the similarity between endpoints of each link to find the inter-community links to remove in order to create basic groups of nodes properly connected. In the second step we propose a strategy to merge these initial groups to identify the final community structure (with k communities or the structure that maximizes the modularity in Community Detection Based on Node Similarity and Modularity Q (ComDBNSQ)). The proposed method is tested on the real and computer-generated networks, and it demonstrates the effectiveness and correctness of the method. Also, the method saves the time complexity.

Suggested Citation

  • Saoud, Bilal & Moussaoui, Abdelouahab, 2018. "Node similarity and modularity for finding communities in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1958-1966.
  • Handle: RePEc:eee:phsmap:v:492:y:2018:i:c:p:1958-1966
    DOI: 10.1016/j.physa.2017.11.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117311883
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.11.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Weitong & Zhang, Rui & Shang, Ronghua & Li, Juanfei & Jiao, Licheng, 2019. "Application of natural computation inspired method in community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 130-150.
    2. Hesamipour, Sajjad & Balafar, Mohammad Ali, 2019. "A new method for detecting communities and their centers using the Adamic/Adar Index and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    3. Wu, Liuyi & Dong, Lijun & Wang, Yi & Zhang, Feng & Lee, Victor E. & Kang, Xiaojun & Liang, Qingzhong, 2018. "Uniform-scale assessment of role minimization in bipartite networks and its application to access control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 381-397.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:492:y:2018:i:c:p:1958-1966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.