IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53302-5.html
   My bibliography  Save this article

A tissue bandage for pelvic ganglia injury

Author

Listed:
  • Jing He

    (Zhejiang University
    Zhejiang University Medical Center)

  • Lin Qian

    (Hangzhou Medical College)

  • Zhuang Li

    (Zhejiang University)

  • Yanpeng Wang

    (Hangzhou Medical College)

  • Kai Liu

    (Zhejiang University)

  • Haibin Wei

    (Hangzhou Medical College)

  • Yuan Sun

    (Zhejiang University)

  • Jiaoyan He

    (Jinzhou Medical University)

  • Ke Yao

    (Zhejiang University)

  • Jiahao Weng

    (Zhejiang University)

  • Xuanhan Hu

    (Hangzhou Medical College)

  • Dahong Zhang

    (Hangzhou Medical College)

  • Yong He

    (Zhejiang University
    Zhejiang University Medical Center)

Abstract

Neurogenic bladder often occurs after pelvic ganglia injury. Its symptoms, like severe urinary retention and incontinence, have a significant impact on individuals’ quality of life. Unfortunately, there are currently no effective treatments available for this type of injury. Here, we designed a fiber-enhanced tissue bandage for injured pelvic ganglia. Tight junctions formed in tissue bandages create a mini tissue structure that enhances resistance in an in vivo environment and delivers growth factors to support the healing of ganglia. Strength fibers are similar to clinical bandages and guarantee ease of handling. Furthermore, tissue bandages can be stored at low temperatures over 5 months without compromising cell viability, meeting the requirements for clinical products. A tissue bandage was applied to a male rat with a bilateral major pelvic ganglia crush injury. Compared to the severe neurogenic bladder symptoms observed in the injury and scaffold groups, tissue bandages significantly improved bladder function. We found that tissue bandage increases resistance to mechanical injury by boosting the expression of cytoskeletal proteins within the major pelvic ganglia. Overall, tissue bandages show promise as a practical therapeutic approach for ganglia repair, offering hope for developing more effective treatments for this thorny condition.

Suggested Citation

  • Jing He & Lin Qian & Zhuang Li & Yanpeng Wang & Kai Liu & Haibin Wei & Yuan Sun & Jiaoyan He & Ke Yao & Jiahao Weng & Xuanhan Hu & Dahong Zhang & Yong He, 2024. "A tissue bandage for pelvic ganglia injury," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53302-5
    DOI: 10.1038/s41467-024-53302-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53302-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53302-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel A. Fletcher & R. Dyche Mullins, 2010. "Cell mechanics and the cytoskeleton," Nature, Nature, vol. 463(7280), pages 485-492, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gábor Pete & Ádám Timár & Sigurdur Örn Stefánsson & Ivan Bonamassa & Márton Pósfai, 2024. "Physical networks as network-of-networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Nishkantha Arulkumaran & Mervyn Singer & Stefan Howorka & Jonathan R. Burns, 2023. "Creating complex protocells and prototissues using simple DNA building blocks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Matt D. G. Hughes & Sophie Cussons & Benjamin S. Hanson & Kalila R. Cook & Tímea Feller & Najet Mahmoudi & Daniel L. Baker & Robert Ariëns & David A. Head & David J. Brockwell & Lorna Dougan, 2023. "Building block aspect ratio controls assembly, architecture, and mechanics of synthetic and natural protein networks," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Chao Jiang & Hong-Yu Luo & Xinpeng Xu & Shuo-Xing Dou & Wei Li & Dongshi Guan & Fangfu Ye & Xiaosong Chen & Ming Guo & Peng-Ye Wang & Hui Li, 2023. "Switch of cell migration modes orchestrated by changes of three-dimensional lamellipodium structure and intracellular diffusion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Daniela Sorrentino & Simona Ranallo & Francesco Ricci & Elisa Franco, 2024. "Developmental assembly of multi-component polymer systems through interconnected synthetic gene networks in vitro," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Muqing Cao & Xiaoxiao Zou & Chaoyi Li & Zaisheng Lin & Ni Wang & Zhongju Zou & Youqiong Ye & Joachim Seemann & Beth Levine & Zaiming Tang & Qing Zhong, 2023. "An actin filament branching surveillance system regulates cell cycle progression, cytokinesis and primary ciliogenesis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Jiu-Tao Hang & Yu Kang & Guang-Kui Xu & Huajian Gao, 2021. "A hierarchical cellular structural model to unravel the universal power-law rheological behavior of living cells," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    8. Gaurav Luthria & Ran Li & Stephanie Wang & Mark Prytyskach & Rainer H. Kohler & Douglas A. Lauffenburger & Timothy J. Mitchison & Ralph Weissleder & Miles A. Miller, 2020. "In vivo microscopy reveals macrophage polarization locally promotes coherent microtubule dynamics in migrating cancer cells," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    9. Yuhang Zhang & Jingyi Du & Xian Liu & Fei Shang & Yunxin Deng & Jiaqing Ye & Yukai Wang & Jie Yan & Hu Chen & Miao Yu & Shimin Le, 2024. "Multi-domain interaction mediated strength-building in human α-actinin dimers unveiled by direct single-molecule quantification," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Suchet Nanda & Abram Calderon & Arya Sachan & Thanh-Thuy Duong & Johannes Koch & Xiaoyi Xin & Djamschid Solouk-Stahlberg & Yao-Wen Wu & Perihan Nalbant & Leif Dehmelt, 2023. "Rho GTPase activity crosstalk mediated by Arhgef11 and Arhgef12 coordinates cell protrusion-retraction cycles," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Venkat R. Chirasani & Mohammad Ashhar I. Khan & Juilee N. Malavade & Nikolay V. Dokholyan & Brenton D. Hoffman & Sharon L. Campbell, 2023. "Molecular basis and cellular functions of vinculin-actin directional catch bonding," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    12. Jindal, Akriti & Gupta, Arvind Kumar, 2021. "Effect of local dissociation on symmetry breaking in exclusion model constituted by bridge lane and input-output TASEPs," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Reena Kumari & Katharina Ven & Megan Chastney & Shrikant B. Kokate & Johan Peränen & Jesse Aaron & Konstantin Kogan & Leonardo Almeida-Souza & Elena Kremneva & Renaud Poincloux & Teng-Leong Chew & Pet, 2024. "Focal adhesions contain three specialized actin nanoscale layers," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    14. Alves Ribeiro, Marcus V. & Jurjiu, Aurel & Galiceanu, Mircea, 2022. "Dynamics of semiflexible generalized scale-free polymer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    15. Frolov, Nikita & Bijnens, Bram & Ruiz-Reynés, Daniel & Gelens, Lendert, 2024. "Dynein-driven self-organization of microtubules: An entropy- and network-based analysis," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    16. Chrystian Junqueira Alves & Rafael Dariolli & Jonathan Haydak & Sangjo Kang & Theodore Hannah & Robert J. Wiener & Stefanie DeFronzo & Rut Tejero & Gabriele L. Gusella & Aarthi Ramakrishnan & Rodrigo , 2021. "Plexin-B2 orchestrates collective stem cell dynamics via actomyosin contractility, cytoskeletal tension and adhesion," Nature Communications, Nature, vol. 12(1), pages 1-23, December.
    17. Antoine Vian & Marie Pochitaloff & Shuo-Ting Yen & Sangwoo Kim & Jennifer Pollock & Yucen Liu & Ellen M. Sletten & Otger Campàs, 2023. "In situ quantification of osmotic pressure within living embryonic tissues," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Mariafrancesca Cascione & Valeria De Matteis & Rosaria Rinaldi, 2019. "Cytomechanical Alterations Induced by Inorganic NPs," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 14(4), pages 1-2, February.
    19. Song Gao & Shuaibin Wang & Zhiying Zhao & Chao Zhang & Zhicao Liu & Ping Ye & Zhifang Xu & Baozhu Yi & Kai Jiao & Gurudatta A. Naik & Shi Wei & Soroush Rais-Bahrami & Sejong Bae & Wei-Hsiung Yang & Gu, 2022. "TUBB4A interacts with MYH9 to protect the nucleus during cell migration and promotes prostate cancer via GSK3β/β-catenin signalling," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    20. Yuji Shimizu & Takanori Kihara & Seyed Mohammad Ali Haghparast & Shunsuke Yuba & Jun Miyake, 2012. "Simple Display System of Mechanical Properties of Cells and Their Dispersion," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-8, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53302-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.