IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v148y2021ics0960077921003659.html
   My bibliography  Save this article

Interplay between solitary states and chimeras in multiplex neural networks

Author

Listed:
  • Rybalova, E.V.
  • Zakharova, A.
  • Strelkova, G.I.

Abstract

We study numerically the spatiotemporal dynamics and synchronization of a heterogeneous two-layer multiplex network where each layer is represented by a ring of nonlocally coupled FitzHugh–Nagumo neurons in the oscillatory regime. Being uncoupled, individual layers can show chimera states, solitary states and combined structures (the coexistence of chimera and solitary states) depending on the values of the intralayer coupling parameters and initial conditions. We choose different spatiotemporal patterns in the coupled layers and systematically study synchronization between them when the interlayer coupling is introduced through either the fast (activator) or the slow (inhibitor) variable of the FitzHugh–Nagumo oscillators. Our results enable to uncover the competitive behavior between the solitary states and the chimeras in the transition to synchronous regime in the considered network. We also analyze the synchronization peculiarities for two different types of the interlayer coupling by using the local and global synchronization measures.

Suggested Citation

  • Rybalova, E.V. & Zakharova, A. & Strelkova, G.I., 2021. "Interplay between solitary states and chimeras in multiplex neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
  • Handle: RePEc:eee:chsofr:v:148:y:2021:i:c:s0960077921003659
    DOI: 10.1016/j.chaos.2021.111011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921003659
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Louis M. Pecora & Francesco Sorrentino & Aaron M. Hagerstrom & Thomas E. Murphy & Rajarshi Roy, 2014. "Cluster synchronization and isolated desynchronization in complex networks with symmetries," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    2. Rybalova, E.V. & Strelkova, G.I. & Anishchenko, V.S., 2018. "Mechanism of realizing a solitary state chimera in a ring of nonlocally coupled chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 300-305.
    3. Schülen, Leonhard & Janzen, David A. & Medeiros, Everton S. & Zakharova, Anna, 2021. "Solitary states in multiplex neural networks: Onset and vulnerability," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Schülen, Leonhard & Ghosh, Saptarshi & Kachhvah, Ajay Deep & Zakharova, Anna & Jalan, Sarika, 2019. "Delay engineered solitary states in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 290-296.
    5. Peter J. Menck & Jobst Heitzig & Jürgen Kurths & Hans Joachim Schellnhuber, 2014. "How dead ends undermine power grid stability," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    6. Sunghoon Hong & Youngsub Chun, 2010. "Efficiency and stability in a model of wireless communication networks," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 34(3), pages 441-454, March.
    7. Shepelev, I.A. & Bukh, A.V. & Strelkova, G.I. & Anishchenko, V.S., 2021. "Anti-phase relay synchronization of wave structures in a heterogeneous multiplex network of 2D lattices," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    8. Laurent Larger & Bogdan Penkovsky & Yuri Maistrenko, 2015. "Laser chimeras as a paradigm for multistable patterns in complex systems," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rybalova, E.V. & Vadivasova, T.E. & Strelkova, G.I. & Zakharova, A., 2022. "Multiplexing noise induces synchronization in multilayer networks," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    2. Singh, Arpit & Verma, Umesh Kumar & Mishra, Ajay & Yadav, Kiran & Sharma, Amit & Varshney, Vaibhav, 2024. "Higher-order-interaction in multiplex neuronal network with electric and synaptic coupling," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Lin, Yi & Liu, Wenbo & Hang, Cheng, 2023. "Revelation and experimental verification of quasi-periodic bursting, periodic bursting, periodic oscillation in third-order non-autonomous memristive FitzHugh-Nagumo neuron circuit," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shepelev, I.A. & Bukh, A.V. & Strelkova, G.I., 2022. "Anti-phase synchronization of waves in a multiplex network of van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Rybalova, E.V. & Strelkova, G.I. & Anishchenko, V.S., 2021. "Impact of sparse inter-layer coupling on the dynamics of a heterogeneous multilayer network of chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Rybalova, E. & Averyanov, V. & Lozi, R. & Strelkova, G., 2024. "Peculiarities of the spatio-temporal dynamics of a Hénon–Lozi map network in the presence of Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    4. Ye, Jiachen & Ji, Peng & Waxman, David & Lin, Wei & Moreno, Yamir, 2020. "Impact of intra and inter-cluster coupling balance on the performance of nonlinear networked systems," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Schülen, Leonhard & Janzen, David A. & Medeiros, Everton S. & Zakharova, Anna, 2021. "Solitary states in multiplex neural networks: Onset and vulnerability," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. Ferré, M.A., 2023. "Critical visit to the chimera world," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Tlaie, A. & Ballesteros-Esteban, L.M. & Leyva, I. & Sendiña-Nadal, I., 2019. "Statistical complexity and connectivity relationship in cultured neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 284-290.
    8. Arinushkin, P.A. & Vadivasova, T.E., 2021. "Nonlinear damping effects in a simplified power grid model based on coupled Kuramoto-like oscillators with inertia," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Shepelev, I.A. & Bukh, A.V. & Muni, S.S. & Anishchenko, V.S., 2020. "Role of solitary states in forming spatiotemporal patterns in a 2D lattice of van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    10. Lazarides, N. & Hizanidis, J. & Tsironis, G.P., 2020. "Controlled generation of chimera states in SQUID metasurfaces using DC flux gradients," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    11. Frolov, Nikita & Rakshit, Sarbendu & Maksimenko, Vladimir & Kirsanov, Daniil & Ghosh, Dibakar & Hramov, Alexander, 2021. "Coexistence of interdependence and competition in adaptive multilayer network," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    12. Acotto, Francesca & Venturino, Ezio & Viscardi, Alberto, 2024. "Does a marginal contact with a native species living in a complex domain with a fractional dimension boundary represent a sufficient invasive mechanism for the establishment of a migrating population?," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    13. Hamid Beladi & Xiao Luo & Reza Oladi, 2024. "Market networks: the core," Theory and Decision, Springer, vol. 97(3), pages 485-498, November.
    14. Khramenkov, Vladislav & Dmitrichev, Aleksei & Nekorkin, Vladimir, 2021. "Partial stability criterion for a heterogeneous power grid with hub structures," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    15. Atiyeh Bayani & Fahimeh Nazarimehr & Sajad Jafari & Kirill Kovalenko & Gonzalo Contreras-Aso & Karin Alfaro-Bittner & Rubén J. Sánchez-García & Stefano Boccaletti, 2024. "The transition to synchronization of networked systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Xiuqi Wu & Ying Zhang & Junsong Peng & Sonia Boscolo & Christophe Finot & Heping Zeng, 2022. "Farey tree and devil’s staircase of frequency-locked breathers in ultrafast lasers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Zhang, Ding-Xue & Zhao, Dan & Guan, Zhi-Hong & Wu, Yonghong & Chi, Ming & Zheng, Gui-Lin, 2016. "Probabilistic analysis of cascade failure dynamics in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 299-309.
    18. Minati, Ludovico & Bartels, Jim & Li, Chao & Frasca, Mattia & Ito, Hiroyuki, 2022. "Synchronization phenomena in dual-transistor spiking oscillators realized experimentally towards physical reservoirs," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    19. Singh, Arpit & Verma, Umesh Kumar & Mishra, Ajay & Yadav, Kiran & Sharma, Amit & Varshney, Vaibhav, 2024. "Higher-order-interaction in multiplex neuronal network with electric and synaptic coupling," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    20. Semenov, Vladimir V. & Bukh, Andrei V. & Semenova, Nadezhda, 2023. "Delay-induced self-oscillation excitation in the Fitzhugh–Nagumo model: Regular and chaotic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:148:y:2021:i:c:s0960077921003659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.