IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18381-0.html
   My bibliography  Save this article

Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation

Author

Listed:
  • Pei Chen

    (South China University of Technology)

  • Rui Liu

    (South China University of Technology)

  • Kazuyuki Aihara

    (The University of Tokyo
    The University of Tokyo)

  • Luonan Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences, Chinese Academy of Sciences
    Chinese Academy of Sciences
    Zhangjiang Laboratory)

Abstract

We develop an auto-reservoir computing framework, Auto-Reservoir Neural Network (ARNN), to efficiently and accurately make multi-step-ahead predictions based on a short-term high-dimensional time series. Different from traditional reservoir computing whose reservoir is an external dynamical system irrelevant to the target system, ARNN directly transforms the observed high-dimensional dynamics as its reservoir, which maps the high-dimensional/spatial data to the future temporal values of a target variable based on our spatiotemporal information (STI) transformation. Thus, the multi-step prediction of the target variable is achieved in an accurate and computationally efficient manner. ARNN is successfully applied to both representative models and real-world datasets, all of which show satisfactory performance in the multi-step-ahead prediction, even when the data are perturbed by noise and when the system is time-varying. Actually, such ARNN transformation equivalently expands the sample size and thus has great potential in practical applications in artificial intelligence and machine learning.

Suggested Citation

  • Pei Chen & Rui Liu & Kazuyuki Aihara & Luonan Chen, 2020. "Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18381-0
    DOI: 10.1038/s41467-020-18381-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18381-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18381-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Yuewen & Wen, Lihong & Shen, Chaowen, 2024. "Based on hypernetworks and multifractals: Deep distribution feature fusion for multidimensional nonstationary time series prediction," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    2. Tao Wu & Xiangyun Gao & Feng An & Xiaotian Sun & Haizhong An & Zhen Su & Shraddha Gupta & Jianxi Gao & Jürgen Kurths, 2024. "Predicting multiple observations in complex systems through low-dimensional embeddings," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Wu, Tao & Gao, Xiangyun & An, Feng & Kurths, Jürgen, 2023. "The complex dynamics of correlations within chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    4. Ling-Wei Kong & Gene A. Brewer & Ying-Cheng Lai, 2024. "Reservoir-computing based associative memory and itinerancy for complex dynamical attractors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Wu, Tao & Gao, Xiangyun & An, Feng & Xu, Xin & Kurths, Jürgen, 2024. "Forecasting the dynamics of correlations in complex systems," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    6. Hajimohammadi, Zeinab & Baharifard, Fatemeh & Ghodsi, Ali & Parand, Kourosh, 2021. "Fractional Chebyshev deep neural network (FCDNN) for solving differential models," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    7. Sangiorgio, Matteo & Dercole, Fabio & Guariso, Giorgio, 2021. "Forecasting of noisy chaotic systems with deep neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18381-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.