IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v181y2024ics0960077924002182.html
   My bibliography  Save this article

Asymmetric games on networks: Mapping to Ising models and bounded rationality

Author

Listed:
  • Zimmaro, Filippo
  • Galam, Serge
  • Javarone, Marco Alberto

Abstract

We investigate the dynamics of coordination and consensus in an agent population. Considering agents endowed with bounded rationality, we study asymmetric coordination games using a mapping to random field Ising models. In doing so, we investigate the relationship between group coordination and agent rationality. Analytical calculations and numerical simulations of the proposed model lead to novel insight into opinion dynamics. For instance, we find that bounded rationality and preference intensity can determine a series of possible scenarios with different levels of opinion polarization. To conclude, we deem our investigation opens a new avenue for studying game dynamics through methods of statistical physics.

Suggested Citation

  • Zimmaro, Filippo & Galam, Serge & Javarone, Marco Alberto, 2024. "Asymmetric games on networks: Mapping to Ising models and bounded rationality," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924002182
    DOI: 10.1016/j.chaos.2024.114666
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924002182
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hernández, Penélope & Muñoz-Herrera, Manuel & Sánchez, Ángel, 2013. "Heterogeneous network games: Conflicting preferences," Games and Economic Behavior, Elsevier, vol. 79(C), pages 56-66.
    2. Sanjeev Goyal & Penélope Hernández & Guillem Martínez-Cánovas & Frédéric Moisan & Manuel Muñoz-Herrera & Angel Sánchez, 2021. "Integration and diversity," Experimental Economics, Springer;Economic Science Association, vol. 24(2), pages 387-413, June.
      • Goyal, S. & Hernández, P. & Muñnez-Cánovasz, G. & Moisan, F. & Muñoz-Herrera, M. & Sánchez, A., 2017. "Integration and Diversity," Cambridge Working Papers in Economics 1721, Faculty of Economics, University of Cambridge.
      • Sanjeev Goyal & Penelope Hernandez & Guillem Martinez-Canovas & Frederic Moisan & Manuel Munoz-Herrera & Angel Sanchez, 2019. "Integration and Diversity," Working Papers 20190025, New York University Abu Dhabi, Department of Social Science, revised Sep 2020.
      • Sanjeev Goyal & Penélope Hernández & Guillem Martínez-Cánovas & Frederic Moisan & Manuel Muñoz-Herrera & Angel Sánchez, 2021. "Integration and Diversity," Post-Print hal-03188210, HAL.
      • Sanjeev Goyal & Pénélope Hernández & Guillem Martínez-Cánovas & Frédéric Moisan & Manuel Muñoz-Herrera & Ángel Sánchez, 2021. "Integration and diversity," Post-Print halshs-03051962, HAL.
    3. Galam, Serge & Walliser, Bernard, 2010. "Ising model versus normal form game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 481-489.
    4. Marco Alberto Javarone, 2016. "Statistical physics of the spatial Prisoner’s Dilemma with memory-aware agents," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(2), pages 1-6, February.
    5. Hernández, Penélope & Martínez-Cánovas, Guillem & Muñoz-Herrera, Manuel & Sánchez, Angel, 2017. "Equilibrium characterization of networks under conflicting preferences," Economics Letters, Elsevier, vol. 155(C), pages 154-156.
    6. Duh, Maja & Gosak, Marko & Perc, Matjaž, 2021. "Public goods games on random hyperbolic graphs with mixing," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    7. Serge Galam, 2008. "Sociophysics: A Review Of Galam Models," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 409-440.
    8. Galam, Serge, 1997. "Rational group decision making: A random field Ising model at T = 0," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 238(1), pages 66-80.
    9. Correia, A.D. & Leestmaker, L.L. & Stoof, H.T.C. & Broere, J.J., 2022. "Asymmetric games on networks: Towards an Ising-model representation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    10. Serge Galam & Marco Alberto Javarone, 2016. "Modeling Radicalization Phenomena in Heterogeneous Populations," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-15, May.
    11. Marco Alberto Javarone, 2016. "Statistical physics of the spatial Prisoner’s Dilemma with memory-aware agents," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(2), pages 1-6, February.
    12. Santiago Guisasola & Donald Saari, 2020. "With Potential Games, Which Outcome Is Better?," Games, MDPI, vol. 11(3), pages 1-20, August.
    13. Charles Crabtree & Holger L Kern & David A Siegel, 2020. "Cults of personality, preference falsification, and the dictator’s dilemma," Journal of Theoretical Politics, , vol. 32(3), pages 409-434, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javarone, Marco Alberto, 2016. "An evolutionary strategy based on partial imitation for solving optimization problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 262-269.
    2. Marco Alberto Javarone, 2016. "Modeling Poker Challenges by Evolutionary Game Theory," Games, MDPI, vol. 7(4), pages 1-10, December.
    3. Serge Galam & Marco Alberto Javarone, 2016. "Modeling Radicalization Phenomena in Heterogeneous Populations," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-15, May.
    4. Li, Wen-Jing & Chen, Zhi & Jin, Ke-Zhong & Wang, Jun & Yuan, Lin & Gu, Changgui & Jiang, Luo-Luo & Perc, Matjaž, 2022. "Options for mobility and network reciprocity to jointly yield robust cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    5. Takahara, Akihiro & Sakiyama, Tomoko, 2023. "Twisted strategy may enhance the evolution of cooperation in spatial prisoner’s dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    6. Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Migration based on environment comparison promotes cooperation in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    7. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    8. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
    9. Chen, Wei & Wang, Jianwei & Yu, Fengyuan & He, Jialu & Xu, Wenshu & Wang, Rong, 2021. "Effects of emotion on the evolution of cooperation in a spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    10. Ji, Jiezhou & Pan, Qiuhui & Zhu, Wenqiang & He, Mingfeng, 2023. "The influence of own historical information and environmental historical information on the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    11. Cheng, Jiangjiang & Mei, Wenjun & Su, Wei & Chen, Ge, 2023. "Evolutionary games on networks: Phase transition, quasi-equilibrium, and mathematical principles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    12. Mo, Fei & Han, Wenchen, 2024. "Long homogeneous payoff records with the latest strategy promotes the cooperation," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    13. Oliveira, Igor V.G. & Wang, Chao & Dong, Gaogao & Du, Ruijin & Fiore, Carlos E. & Vilela, André L.M. & Stanley, H. Eugene, 2024. "Entropy production on cooperative opinion dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    14. André Barreira Da Silva Rocha, 2017. "Cooperation In The Well-Mixed Two-Population Snowdrift Game With Punishment Enforced Through Different Mechanisms," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 20(04n05), pages 1-21, June.
    15. Shu, Feng, 2020. "A win-switch-lose-stay strategy promotes cooperation in the evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    16. Wu, Yu’e & Zhang, Zhipeng & Chang, Shuhua, 2019. "Reciprocal reward promotes the evolution of cooperation in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 230-236.
    17. Carlos Rodríguez Lucatero & Luis Angel Alarcón Ramos, 2018. "Use of Enumerative Combinatorics for Proving the Applicability of an Asymptotic Stability Result on Discrete-Time SIS Epidemics in Complex Networks," Mathematics, MDPI, vol. 7(1), pages 1-25, December.
    18. Muñoz, Manuel, 2024. "Identity change and economic mobility: Experimental evidence," Games and Economic Behavior, Elsevier, vol. 145(C), pages 493-509.
    19. Lucas Wardil & Marco Antonio Amaral, 2017. "Cooperation in Public Goods Games: Stay, But Not for Too Long," Games, MDPI, vol. 8(3), pages 1-10, August.
    20. Shi, Zhenyu & Wei, Wei & Zheng, Hongwei & Zheng, Zhiming, 2023. "Bidirectional supervision: An effective method to suppress corruption and defection under the third party punishment mechanism of donation games," Applied Mathematics and Computation, Elsevier, vol. 450(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924002182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.