IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v595y2022ics0378437122001224.html
   My bibliography  Save this article

Migration based on environment comparison promotes cooperation in evolutionary games

Author

Listed:
  • Zhang, Liming
  • Li, Haihong
  • Dai, Qionglin
  • Yang, Junzhong

Abstract

Human beings and natural creatures often migrate in search of better environments. When both local and global environments can be perceived by individuals, they may determine whether to migrate or not based on the comparison. If the individuals realize the local environments are worse than the global ones, they are more likely to leave their original place. Otherwise, they may choose to stay still. Considering these, we study the evolutionary games in a dynamically changing population on a square lattice, in which the players migrate based on the comparison between local and global environments. The simulation results show that cooperation can be significantly promoted. By examining the strategy patterns during the evolution, we find there exist two evolutionary stages that account for the enhancement of cooperation. One is the clustering of cooperators, in which cooperator clusters get strengthened by slow migration of cooperators and fast migration of defectors. The other is the coalescence of cooperator clusters, which induces further increment of the cooperation level. Besides, we investigate the effects of two different types of noises on cooperation, which are introduced in migration and in strategy imitation, respectively. The results reveal that cooperation could be enhanced by low migration noise whereas high strategy-adoption noise.

Suggested Citation

  • Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Migration based on environment comparison promotes cooperation in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
  • Handle: RePEc:eee:phsmap:v:595:y:2022:i:c:s0378437122001224
    DOI: 10.1016/j.physa.2022.127073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122001224
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernando P. Santos & Francisco C. Santos & Jorge M. Pacheco, 2018. "Social norm complexity and past reputations in the evolution of cooperation," Nature, Nature, vol. 555(7695), pages 242-245, March.
    2. Dirk Helbing & Wenjian Yu, 2008. "Migration As A Mechanism To Promote Cooperation," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 11(04), pages 641-652.
    3. Szolnoki, Attila & Danku, Zsuzsa, 2018. "Dynamic-sensitive cooperation in the presence of multiple strategy updating rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 371-377.
    4. Andrew R. Tilman & Joshua B. Plotkin & Erol Akçay, 2020. "Evolutionary games with environmental feedbacks," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    5. Cassar, Alessandra, 2007. "Coordination and cooperation in local, random and small world networks: Experimental evidence," Games and Economic Behavior, Elsevier, vol. 58(2), pages 209-230, February.
    6. Chen, Zhuo & Gao, Jianxi & Cai, Yunze & Xu, Xiaoming, 2011. "Evolution of cooperation among mobile agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1615-1622.
    7. Chu, Chen & Zhai, Yao & Mu, Chunjiang & Hu, Die & Li, Tong & Shi, Lei, 2019. "Reputation-based popularity promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    8. Marco Alberto Javarone, 2016. "Statistical physics of the spatial Prisoner’s Dilemma with memory-aware agents," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(2), pages 1-6, February.
    9. Marco Alberto Javarone, 2016. "Statistical physics of the spatial Prisoner’s Dilemma with memory-aware agents," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(2), pages 1-6, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2023. "Group-size dependent synergy in heterogeneous populations," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Tian, Yue & Gao, Shun & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2024. "Particle swarm intelligence promotes cooperation by adapting interaction radii in co-evolutionary games," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    3. Liao, Hui-Min & Hao, Qing-Yi & Qian, Jia-Li & Wu, Chao-Yun & Guo, Ning & Ling, Xiang, 2023. "Cooperative evolution under the joint influence of local popularity and global popularity," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    4. Liu, Yaojun & Liu, Xingwen, 2024. "Promotion of cooperation in evolutionary snowdrift game with heterogeneous memories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    5. Guo, Yujie & Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2023. "Network adaption based on environment feedback promotes cooperation in co-evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    6. Zhao, Xiaowei & Xia, Haoxiang, 2023. "Information accuracy of migration and imitation influences the evolution of cooperation in spatial prisoner's dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    7. Yang, Yixin & Pan, Qiuhui & He, Mingfeng, 2023. "The influence of environment-based autonomous mobility on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Zhenyu & Wei, Wei & Zheng, Hongwei & Zheng, Zhiming, 2023. "Bidirectional supervision: An effective method to suppress corruption and defection under the third party punishment mechanism of donation games," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    2. Li, Yan & Ye, Hang, 2015. "Effect of migration based on strategy and cost on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 156-165.
    3. Takahara, Akihiro & Sakiyama, Tomoko, 2023. "Twisted strategy may enhance the evolution of cooperation in spatial prisoner’s dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    4. Javarone, Marco Alberto, 2016. "An evolutionary strategy based on partial imitation for solving optimization problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 262-269.
    5. Alessandra F. Lütz & Marco Antonio Amaral & Ian Braga & Lucas Wardil, 2023. "Invasion of Optimal Social Contracts," Games, MDPI, vol. 14(3), pages 1-14, May.
    6. Chen, Wei & Wang, Jianwei & Yu, Fengyuan & He, Jialu & Xu, Wenshu & Wang, Rong, 2021. "Effects of emotion on the evolution of cooperation in a spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    7. Ji, Jiezhou & Pan, Qiuhui & Zhu, Wenqiang & He, Mingfeng, 2023. "The influence of own historical information and environmental historical information on the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    8. Cheng, Jiangjiang & Mei, Wenjun & Su, Wei & Chen, Ge, 2023. "Evolutionary games on networks: Phase transition, quasi-equilibrium, and mathematical principles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    9. André Barreira Da Silva Rocha, 2017. "Cooperation In The Well-Mixed Two-Population Snowdrift Game With Punishment Enforced Through Different Mechanisms," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 20(04n05), pages 1-21, June.
    10. Shu, Feng, 2020. "A win-switch-lose-stay strategy promotes cooperation in the evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    11. Wu, Yu’e & Zhang, Zhipeng & Chang, Shuhua, 2019. "Reciprocal reward promotes the evolution of cooperation in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 230-236.
    12. Marco Alberto Javarone, 2016. "Modeling Poker Challenges by Evolutionary Game Theory," Games, MDPI, vol. 7(4), pages 1-10, December.
    13. Lucas Wardil & Marco Antonio Amaral, 2017. "Cooperation in Public Goods Games: Stay, But Not for Too Long," Games, MDPI, vol. 8(3), pages 1-10, August.
    14. Wang, Bin & Kang, Wenjun & Sheng, Jinfang & Cheng, Lvhang & Hou, Zhengang, 2021. "Effects of trust-driven updating rule based on reputation in spatial prisoner’s dilemma games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    15. Garcia, Amanda & Obeidi, Amer & Hipel, Keith W., 2018. "Strategic advice for decision-making under conflict based on observed behaviour," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 96-104.
    16. Shu, Feng & Li, Min & Liu, Xingwen, 2019. "Memory mechanism with weighting promotes cooperation in the evolutionary games," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 17-24.
    17. Wang, Xiaofeng & Perc, Matjaž, 2021. "Emergence of cooperation in spatial social dilemmas with expulsion," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    18. Zhang, Liming & Huang, Changwei & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2021. "Cooperation guided by imitation, aspiration and conformity-driven dynamics in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    19. de Oliveira, B.F. & de Moraes, M.V. & Bazeia, D. & Szolnoki, A., 2021. "Mobility driven coexistence of living organisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    20. Pan, Qiuhui & Wang, Linpeng & He, Mingfeng, 2020. "Social dilemma based on reputation and successive behavior," Applied Mathematics and Computation, Elsevier, vol. 384(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:595:y:2022:i:c:s0378437122001224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.