IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v176y2023ics0960077923009918.html
   My bibliography  Save this article

Data-driven localized waves and parameter discovery in the massive Thirring model via extended physics-informed neural networks with interface zones

Author

Listed:
  • Chen, Junchao
  • Song, Jin
  • Zhou, Zijian
  • Yan, Zhenya

Abstract

In this paper, we study data-driven localized wave solutions and parameter discovery in the massive Thirring (MT) model via the deep learning in the framework of physics-informed neural networks (PINNs) algorithm. Abundant data-driven solutions including soliton of bright/dark type, breather and rogue wave are simulated accurately and analyzed contrastively with relative and absolute errors. For higher-order localized wave solutions, we employ the extended PINNs (XPINNs) with domain decomposition to capture the complete pictures of dynamic behaviors such as soliton collisions, breather oscillations and rogue-wave superposition. In particular, we modify the interface line in domain decomposition of XPINNs into a small interface zone and introduce the pseudo initial, residual and gradient conditions as interface conditions linked adjacently with individual neural networks. Then this modified approach is applied successfully to various solutions ranging from bright-bright soliton, dark-dark soliton, dark-antidark soliton, general breather, Kuznetsov-Ma breather and second-order rogue wave. Experimental results show that this improved version of XPINNs reduce the complexity of computation with faster convergence rate and keep the quality of learned solutions with smoother stitching performance as well. For the inverse problems, the unknown coefficient parameters of linear and nonlinear terms in the MT model are identified accurately with and without noise by using the classical PINNs algorithm.

Suggested Citation

  • Chen, Junchao & Song, Jin & Zhou, Zijian & Yan, Zhenya, 2023. "Data-driven localized waves and parameter discovery in the massive Thirring model via extended physics-informed neural networks with interface zones," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923009918
    DOI: 10.1016/j.chaos.2023.114090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923009918
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Gang-Zhou & Fang, Yin & Kudryashov, Nikolay A. & Wang, Yue-Yue & Dai, Chao-Qing, 2022. "Prediction of optical solitons using an improved physics-informed neural network method with the conservation law constraint," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. Fang, Yin & Wu, Gang-Zhou & Kudryashov, Nikolay A. & Wang, Yue-Yue & Dai, Chao-Qing, 2022. "Data-driven soliton solutions and model parameters of nonlinear wave models via the conservation-law constrained neural network method," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Li, Jiaheng & Li, Biao, 2022. "Mix-training physics-informed neural networks for the rogue waves of nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Pu, Jun-Cai & Chen, Yong, 2022. "Data-driven vector localized waves and parameters discovery for Manakov system using deep learning approach," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    5. Zhong, Ming & Yan, Zhenya, 2022. "Data-driven soliton mappings for integrable fractional nonlinear wave equations via deep learning with Fourier neural operator," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Wentao & Li, Biao, 2024. "Construction of degenerate lump solutions for (2+1)-dimensional Yu-Toda-Sasa-Fukuyama equation," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolay A. Kudryashov, 2023. "Hamiltonians of the Generalized Nonlinear Schrödinger Equations," Mathematics, MDPI, vol. 11(10), pages 1-12, May.
    2. Fang, Yin & Zhu, Bo-Wei & Bo, Wen-Bo & Wang, Yue-Yue & Dai, Chao-Qing, 2023. "Data-driven prediction of spatial optical solitons in fractional diffraction," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    3. Yin, Yu-Hang & Lü, Xing, 2024. "Multi-parallelized PINNs for the inverse problem study of NLS typed equations in optical fiber communications: Discovery on diverse high-order terms and variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    4. Fang, Yin & Bo, Wen-Bo & Wang, Ru-Ru & Wang, Yue-Yue & Dai, Chao-Qing, 2022. "Predicting nonlinear dynamics of optical solitons in optical fiber via the SCPINN," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    5. Zhong, Ming & Yan, Zhenya, 2022. "Data-driven soliton mappings for integrable fractional nonlinear wave equations via deep learning with Fourier neural operator," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    6. Wu, Gang-Zhou & Fang, Yin & Kudryashov, Nikolay A. & Wang, Yue-Yue & Dai, Chao-Qing, 2022. "Prediction of optical solitons using an improved physics-informed neural network method with the conservation law constraint," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    7. Wang, Haotian & Li, Xin & Zhou, Qin & Liu, Wenjun, 2023. "Dynamics and spectral analysis of optical rogue waves for a coupled nonlinear Schrödinger equation applicable to pulse propagation in isotropic media," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    8. Chen, Jing & Xiao, Min & Wu, Xiaoqun & Wang, Zhengxin & Cao, Jinde, 2022. "Spatiotemporal dynamics on a class of (n+1)-dimensional reaction–diffusion neural networks with discrete delays and a conical structure," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    9. Chen, Liang-Yuan & Wu, Hong-Yu & Jiang, Li-Hong, 2024. "Partially nonlocal ring-like spatiotemporal superimposed second-order breathers under a harmonic potential," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    10. Zhong, WenYe & Qin, Pei & Zhong, Wei-Ping & Belić, Milivoj, 2022. "Two-dimensional rogue wave clusters in self-focusing Kerr-media," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    11. Kudryashov, Nikolay A., 2024. "Solitons of the complex modified Korteweg–de Vries hierarchy," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    12. Xu, Yun-Jie, 2023. "Vector ring-like combined Akhmediev breathers for partially nonlocal nonlinearity under external potentials," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    13. Chen, Yi-Xiang, 2024. "(3+1)-dimensional partially nonlocal ring-like bright-dark monster waves," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    14. Bhaumik, Bivas & De, Soumen & Changdar, Satyasaran, 2024. "Deep learning based solution of nonlinear partial differential equations arising in the process of arterial blood flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 21-36.
    15. Cao, Qi-Hao & Geng, Kai-Li & Zhu, Bo-Wei & Wang, Yue-Yue & Li, Ji-tao & Dai, Chao-Qing, 2023. "Annular rogue waves in whispering gallery mode optical resonators," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    16. Jaganathan, Meiyazhagan & Bakthavatchalam, Tamil Arasan & Vadivel, Murugesan & Murugan, Selvakumar & Balu, Gopinath & Sankarasubbu, Malaikannan & Ramaswamy, Radha & Sethuraman, Vijayalakshmi & Malomed, 2023. "Data-driven multi-valley dark solitons of multi-component Manakov Model using Physics-Informed Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    17. Zhu, Bo-Wei & Fang, Yin & Liu, Wei & Dai, Chao-Qing, 2022. "Predicting the dynamic process and model parameters of vector optical solitons under coupled higher-order effects via WL-tsPINN," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    18. Li, Wentao & Li, Biao, 2024. "Construction of degenerate lump solutions for (2+1)-dimensional Yu-Toda-Sasa-Fukuyama equation," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    19. Liu, Yindi & Zhao, Zhonglong, 2024. "Periodic line wave, rogue waves and the interaction solutions of the (2+1)-dimensional integrable Kadomtsev–Petviashvili-based system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923009918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.