Satellite image recognition using ensemble neural networks and difference gradient positive-negative momentum
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2023.114432
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ruslan Abdulkadirov & Pavel Lyakhov & Nikolay Nagornov, 2022. "Accelerating Extreme Search of Multidimensional Functions Based on Natural Gradient Descent with Dirichlet Distributions," Mathematics, MDPI, vol. 10(19), pages 1-13, September.
- Altan, Aytaç & Karasu, Seçkin, 2020. "Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Jakob Carlander & Kristina Trygg & Bahram Moshfegh, 2019. "Integration of Measurements and Time Diaries as Complementary Measures to Improve Resolution of BES," Energies, MDPI, vol. 12(11), pages 1-29, May.
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
- Jakob Carlander & Bahram Moshfegh & Jan Akander & Fredrik Karlsson, 2020. "Effects on Energy Demand in an Office Building Considering Location, Orientation, Façade Design and Internal Heat Gains—A Parametric Study," Energies, MDPI, vol. 13(23), pages 1-22, November.
- Fang, Lei & He, Bin, 2023. "A deep learning framework using multi-feature fusion recurrent neural networks for energy consumption forecasting," Applied Energy, Elsevier, vol. 348(C).
- Oscar Claveria & Enric Monte & Petar Soric & Salvador Torra, 2022.
""An application of deep learning for exchange rate forecasting","
IREA Working Papers
202201, University of Barcelona, Research Institute of Applied Economics, revised Jan 2022.
- Oscar Claveria & Enric Monte & Petar Soric & Salvador Torra, 2022. "“An application of deep learning for exchange rate forecasting”," AQR Working Papers 202201, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2022.
- Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
- Paolo Libenzio Brignoli & Alessandro Varacca & Cornelis Gardebroek & Paolo Sckokai, 2024. "Machine learning to predict grains futures prices," Agricultural Economics, International Association of Agricultural Economists, vol. 55(3), pages 479-497, May.
- Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
- Barman, Dipesh & Roy, Jyotirmoy & Alrabaiah, Hussam & Panja, Prabir & Mondal, Sankar Prasad & Alam, Shariful, 2021. "Impact of predator incited fear and prey refuge in a fractional order prey predator model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Ban, Jung-Chao & Chang, Chih-Hung & Hong, Jyy-I & Wu, Yu-Liang, 2021. "Mathematical Analysis of Spread Models: From the viewpoints of Deterministic and random cases," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- Jujie Wang & Zhenzhen Zhuang & Liu Feng, 2022. "Intelligent Optimization Based Multi-Factor Deep Learning Stock Selection Model and Quantitative Trading Strategy," Mathematics, MDPI, vol. 10(4), pages 1-19, February.
- Zhang, Boyi & Shang, Pengjian & Zhou, Qin, 2021. "The identification of fractional order systems by multiscale multivariate analysis," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
- Chen, Xi & Yu, Ruyi & Ullah, Sajid & Wu, Dianming & Li, Zhiqiang & Li, Qingli & Qi, Honggang & Liu, Jihui & Liu, Min & Zhang, Yundong, 2022. "A novel loss function of deep learning in wind speed forecasting," Energy, Elsevier, vol. 238(PB).
- Kashkynbayev, Ardak & Cao, Jinde & Suragan, Durvudkhan, 2021. "Global Lagrange stability analysis of retarded SICNNs," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
- Vivek Kumar Prasad & Pronaya Bhattacharya & Darshil Maru & Sudeep Tanwar & Ashwin Verma & Arunendra Singh & Amod Kumar Tiwari & Ravi Sharma & Ahmed Alkhayyat & Florin-Emilian Țurcanu & Maria Simona Ra, 2022. "Federated Learning for the Internet-of-Medical-Things: A Survey," Mathematics, MDPI, vol. 11(1), pages 1-47, December.
- Janczura, Joanna & Wójcik, Edyta, 2022. "Dynamic short-term risk management strategies for the choice of electricity market based on probabilistic forecasts of profit and risk measures. The German and the Polish market case study," Energy Economics, Elsevier, vol. 110(C).
- Singh, Harendra & Baleanu, Dumitru & Singh, Jagdev & Dutta, Hemen, 2021. "Computational study of fractional order smoking model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Ramos, Paulo Vitor B. & Villela, Saulo Moraes & Silva, Walquiria N. & Dias, Bruno H., 2023. "Residential energy consumption forecasting using deep learning models," Applied Energy, Elsevier, vol. 350(C).
- Chen, Xiaolu & Weng, Tongfeng & Yang, Huijie, 2023. "Synchronization of spatiotemporal chaos and reservoir computing via scalar signals," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
- Yao, Qijia, 2021. "Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Perera, Maneesha & De Hoog, Julian & Bandara, Kasun & Senanayake, Damith & Halgamuge, Saman, 2024. "Day-ahead regional solar power forecasting with hierarchical temporal convolutional neural networks using historical power generation and weather data," Applied Energy, Elsevier, vol. 361(C).
More about this item
Keywords
Optimization methods; Positive-negative moving averages; Ensemble-learning; Pattern recognition; Remote sensing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:179:y:2024:i:c:s0960077923013346. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.