IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2072-d235754.html
   My bibliography  Save this article

Integration of Measurements and Time Diaries as Complementary Measures to Improve Resolution of BES

Author

Listed:
  • Jakob Carlander

    (Division of Building, Energy and Environment Technology, Department of Technology and Environment, University of Gävle, 80176 Gävle, Sweden)

  • Kristina Trygg

    (Technology and Social Change, Linköping University, 58183 Linköping, Sweden)

  • Bahram Moshfegh

    (Division of Building, Energy and Environment Technology, Department of Technology and Environment, University of Gävle, 80176 Gävle, Sweden
    Division of Energy Systems, Department of Management and Engineering, Linköping University, 58183 Linköping, Sweden)

Abstract

Building energy simulation (BES) models rely on a variety of different input data, and the more accurate the input data are, the more accurate the model will be in predicting energy use. The objective of this paper is to show a method for obtaining higher accuracy in building energy simulations of existing buildings by combining time diaries with data from logged measurements, and also to show that more variety is needed in template values of user input data in different kinds of buildings. The case studied in this article is a retirement home in Linköping, Sweden. Results from time diaries and interviews were combined with logged measurements of electricity, temperature, and CO 2 levels to create detailed occupant behavior schedules for use in BES models. Two BES models were compared, one with highly detailed schedules of occupancy, electricity use, and airing, and one using standardized input data of occupant behavior. The largest differences between the models could be seen in energy losses due to airing and in household electricity use, where the one with standardized user input data had a higher amount of electricity use and less losses due to airing of 39% and 99%, respectively. Time diaries and interviews, together with logged measurements, can be great tools to detect behavior that affects energy use in buildings. They can also be used to create detailed schedules and behavioral models, and to help develop standardized user input data for more types of buildings. This will help improve the accuracy of BES models so the energy efficiency gap can be reduced.

Suggested Citation

  • Jakob Carlander & Kristina Trygg & Bahram Moshfegh, 2019. "Integration of Measurements and Time Diaries as Complementary Measures to Improve Resolution of BES," Energies, MDPI, vol. 12(11), pages 1-29, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2072-:d:235754
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2072/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2072/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Delzendeh, Elham & Wu, Song & Lee, Angela & Zhou, Ying, 2017. "The impact of occupants’ behaviours on building energy analysis: A research review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1061-1071.
    2. Marianne Abramsson & Eva Andersson, 2012. "Residential Mobility Patterns of Elderly—Leaving the House for an Apartment," Housing Studies, Taylor & Francis Journals, vol. 27(5), pages 582-604.
    3. Ellegård, Kajsa & Palm, Jenny, 2011. "Visualizing energy consumption activities as a tool for making everyday life more sustainable," Applied Energy, Elsevier, vol. 88(5), pages 1920-1926, May.
    4. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulkadirov, R. & Lyakhov, P. & Bergerman, M. & Reznikov, D., 2024. "Satellite image recognition using ensemble neural networks and difference gradient positive-negative momentum," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    2. Lukas Lundström & Jan Akander, 2019. "Bayesian Calibration with Augmented Stochastic State-Space Models of District-Heated Multifamily Buildings," Energies, MDPI, vol. 13(1), pages 1-28, December.
    3. Jakob Carlander & Bahram Moshfegh & Jan Akander & Fredrik Karlsson, 2020. "Effects on Energy Demand in an Office Building Considering Location, Orientation, Façade Design and Internal Heat Gains—A Parametric Study," Energies, MDPI, vol. 13(23), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uddin, Mohammad Nyme & Chi, Hung-Lin & Wei, His-Hsien & Lee, Minhyun & Ni, Meng, 2022. "Influence of interior layouts on occupant energy-saving behaviour in buildings: An integrated approach using Agent-Based Modelling, System Dynamics and Building Information Modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Rouleau, Jean & Gosselin, Louis & Blanchet, Pierre, 2019. "Robustness of energy consumption and comfort in high-performance residential building with respect to occupant behavior," Energy, Elsevier, vol. 188(C).
    3. Wu, Junqi & Niu, Zhibin & Li, Xiang & Huang, Lizhen & Nielsen, Per Sieverts & Liu, Xiufeng, 2023. "Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach," Energy, Elsevier, vol. 263(PD).
    4. Žižak, Tej & Domjan, Suzana & Medved, Sašo & Arkar, Ciril, 2022. "Efficiency and sustainability assessment of evaporative cooling of photovoltaics," Energy, Elsevier, vol. 254(PA).
    5. Martín Pensado-Mariño & Lara Febrero-Garrido & Pablo Eguía-Oller & Enrique Granada-Álvarez, 2021. "Feasibility of Different Weather Data Sources Applied to Building Indoor Temperature Estimation Using LSTM Neural Networks," Sustainability, MDPI, vol. 13(24), pages 1-15, December.
    6. Abdelhakim Mesloub & Aritra Ghosh & Mabrouk Touahmia & Ghazy Abdullah Albaqawy & Emad Noaime & Badr M. Alsolami, 2020. "Performance Analysis of Photovoltaic Integrated Shading Devices (PVSDs) and Semi-Transparent Photovoltaic (STPV) Devices Retrofitted to a Prototype Office Building in a Hot Desert Climate," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    7. Kittisak Lohwanitchai & Daranee Jareemit, 2021. "Modeling Energy Efficiency Performance and Cost-Benefit Analysis Achieving Net-Zero Energy Building Design: Case Studies of Three Representative Offices in Thailand," Sustainability, MDPI, vol. 13(9), pages 1-24, May.
    8. Risholt, Birgit & Berker, Thomas, 2013. "Success for energy efficient renovation of dwellings—Learning from private homeowners," Energy Policy, Elsevier, vol. 61(C), pages 1022-1030.
    9. Marta Gangolells & Miquel Casals & Núria Forcada & Marcel Macarulla, 2020. "Life Cycle Analysis of a Game-Based Solution for Domestic Energy Saving," Sustainability, MDPI, vol. 12(17), pages 1-18, August.
    10. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    11. Nilsson, Andreas & Bergstad, Cecilia Jakobsson & Thuvander, Liane & Andersson, David & Andersson, Kristin & Meiling, Pär, 2014. "Effects of continuous feedback on households’ electricity consumption: Potentials and barriers," Applied Energy, Elsevier, vol. 122(C), pages 17-23.
    12. Tomasz Szul & Krzysztof Nęcka & Stanisław Lis, 2021. "Application of the Takagi-Sugeno Fuzzy Modeling to Forecast Energy Efficiency in Real Buildings Undergoing Thermal Improvement," Energies, MDPI, vol. 14(7), pages 1-16, March.
    13. Papineau, Maya & Yassin, Kareman & Newsham, Guy & Brice, Sarah, 2021. "Conditional demand analysis as a tool to evaluate energy policy options on the path to grid decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Suzana Domjan & Sašo Medved & Boštjan Černe & Ciril Arkar, 2019. "Fast Modelling of nZEB Metrics of Office Buildings Built with Advanced Glass and BIPV Facade Structures," Energies, MDPI, vol. 12(16), pages 1-18, August.
    15. Amin, Amin & Mourshed, Monjur, 2024. "Community stochastic domestic electricity forecasting," Applied Energy, Elsevier, vol. 355(C).
    16. Ana Ogando-Martínez & Javier López-Gómez & Lara Febrero-Garrido, 2018. "Maintenance Factor Identification in Outdoor Lighting Installations Using Simulation and Optimization Techniques," Energies, MDPI, vol. 11(8), pages 1-13, August.
    17. Shamsi, Mohammad Haris & Ali, Usman & Mangina, Eleni & O’Donnell, James, 2021. "Feature assessment frameworks to evaluate reduced-order grey-box building energy models," Applied Energy, Elsevier, vol. 298(C).
    18. Joanna Piotrowska-Woroniak & Tomasz Szul, 2022. "Application of a Model Based on Rough Set Theory (RST) to Estimate the Energy Efficiency of Public Buildings," Energies, MDPI, vol. 15(23), pages 1-13, November.
    19. Pothitou, Mary & Hanna, Richard F. & Chalvatzis, Konstantinos J., 2016. "Environmental knowledge, pro-environmental behaviour and energy savings in households: An empirical study," Applied Energy, Elsevier, vol. 184(C), pages 1217-1229.
    20. Shu Su & Xiaodong Li & Borong Lin & Hongyang Li & Jingfeng Yuan, 2019. "A Comparison of the Environmental Performance of Cooling and Heating among Different Household Types in China’s Hot Summer–Cold Winter Zone," Sustainability, MDPI, vol. 11(20), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2072-:d:235754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.