IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v175y2023ip2s0960077923009451.html
   My bibliography  Save this article

Stability analysis of a cart-pendulum model with variable convergence rate: A sliding mode control approach for impulsive stochastic systems

Author

Listed:
  • Li, Yuanen
  • Zhang, Huasheng
  • Xie, Xiangpeng
  • Xia, Jianwei

Abstract

In this paper, a sliding mode control problem with variable convergence speed for impulsive stochastic systems based on the cart-pendulum model is investigated. Firstly, the cart-pendulum is modeled as impulsive stochastic system and the interval-driven stability criterion for variable convergence rate is given according to the idea of pole configuration. Meanwhile, the corresponding sliding mode surface functions are designed by pre-adjusting the intervals which in turn regulate the convergence rate of the target system states. To attenuate the oscillation phenomenon that exists in the sliding mode control, the new continuous control rate function is designed on the basis of the saturation function. In addition, a sliding mode control strategy for impulsive stochastic systems is presented to ensure the reachability of the designed sliding surface in finite time and the stability of the reduced-order system under motion of the sliding mode. Finally, the cart-pendulum simulation results demonstrate the effectiveness and feasibility of the sliding mode control.

Suggested Citation

  • Li, Yuanen & Zhang, Huasheng & Xie, Xiangpeng & Xia, Jianwei, 2023. "Stability analysis of a cart-pendulum model with variable convergence rate: A sliding mode control approach for impulsive stochastic systems," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
  • Handle: RePEc:eee:chsofr:v:175:y:2023:i:p2:s0960077923009451
    DOI: 10.1016/j.chaos.2023.114044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923009451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lv, Xuejin & Meng, Xinzhu & Wang, Xinzeng, 2018. "Extinction and stationary distribution of an impulsive stochastic chemostat model with nonlinear perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 273-279.
    2. Hadipour Lakmesari, S. & Mahmoodabadi, M.J. & Yousef Ibrahim, M., 2021. "Fuzzy logic and gradient descent-based optimal adaptive robust controller with inverted pendulum verification," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Cao, Qian & Wei, Du Qu, 2023. "Dynamic surface sliding mode control of chaos in the fourth-order power system," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    4. Yang, Ni & Gao, Ruiyi & Su, Huan, 2022. "Stability of multi-links complex-valued impulsive stochastic systems with Markovian switching and multiple delays," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. Wang, Xuezhen & Zhang, Huasheng, 2023. "Intelligent control of convergence rate of impulsive dynamic systems affected by nonlinear disturbances under stabilizing impulses and its application in Chua’s circuit," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xin & Liu, Lidan & Liu, Meng & Fan, Meng, 2024. "Stochastic dynamics of coral reef system with stage-structure for crown-of-thorns starfish," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    3. Remus-Daniel Ene & Nicolina Pop, 2023. "Semi-Analytical Closed-Form Solutions for the Rikitake-Type System through the Optimal Homotopy Perturbation Method," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    4. Feng, Jiqiang & Li, Yongcai & Zhang, Yingfang & Xu, Chen, 2023. "Stabilization of multi-link delayed neutral-type complex networks with jump diffusion via aperiodically intermittent control," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    5. Zhao, Yanwei & Wang, Huanqing & Xu, Ning & Zong, Guangdeng & Zhao, Xudong, 2023. "Reinforcement learning-based decentralized fault tolerant control for constrained interconnected nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Han, Lihuan & Ma, Yuechao, 2024. "Learning-based asynchronous sliding mode control for semi-Markov jump systems with time-varying delay using relaxed negative-determination lemma," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    7. Lu, Chun & Liu, Honghui & Zhang, De, 2021. "Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Dynamical behavior of a higher order stochastically perturbed SIRI epidemic model with relapse and media coverage," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Ren, Yue & Jiang, Haijun & Hu, Cheng & Li, Xinman & Qin, Xuejiao, 2023. "Discontinuous control for exponential synchronization of complex-valued stochastic multi-layer networks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Guo, Wanying & Meng, Shuyu & Qi, Ruotong & Li, Wenxue & Wu, Yongbao, 2024. "Existence of stationary distribution for stochastic coupled nonlinear strict-feedback systems with Markovian switching," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    11. Liu, Xin & Chen, Lili & Zhao, Yanfeng & Li, Honglin, 2023. "Adaptive event-triggered control for stability of fractional-order T-S fuzzy multi-links complex networks with random coupling delay," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    12. Xue, Haibo & Liu, Xinghua, 2023. "A novel fast terminal sliding mode with predefined-time synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    13. Mu, Yu & Lo, Wing-Cheong, 2021. "Stochastic dynamics of populations with refuge in polluted turbidostat," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    14. Yassine Sabbar & Mehmet Yavuz & Fatma Özköse, 2022. "Infection Eradication Criterion in a General Epidemic Model with Logistic Growth, Quarantine Strategy, Media Intrusion, and Quadratic Perturbation," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    15. Zeghlache, Samir & Ghellab, Mohammed Zinelaabidine & Djerioui, Ali & Bouderah, Brahim & Benkhoris, Mohamed Fouad, 2023. "Adaptive fuzzy fast terminal sliding mode control for inverted pendulum-cart system with actuator faults," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 207-234.
    16. Sabbar, Yassine & Kiouach, Driss & Rajasekar, S.P. & El-idrissi, Salim El Azami, 2022. "The influence of quadratic Lévy noise on the dynamic of an SIC contagious illness model: New framework, critical comparison and an application to COVID-19 (SARS-CoV-2) case," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    17. Li, Jin & Guo, Ying & Liu, Xiaotong & Zhang, Yifan, 2024. "Stabilization of highly nonlinear stochastic coupled systems with Markovian switching under discrete-time state observations control," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    18. Yu Mu & Zuxiong Li & Huili Xiang & Hailing Wang, 2019. "Dynamical Analysis of a Stochastic Multispecies Turbidostat Model," Complexity, Hindawi, vol. 2019, pages 1-18, January.
    19. Mahmoodabadi, M.J., 2023. "An optimal robust fuzzy adaptive integral sliding mode controller based upon a multi-objective grey wolf optimization algorithm for a nonlinear uncertain chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    20. Han, Bingtao & Jiang, Daqing, 2022. "Stationary distribution, extinction and density function of a stochastic prey-predator system with general anti-predator behavior and fear effect," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p2:s0960077923009451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.