IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v172y2023ics0960077923004605.html
   My bibliography  Save this article

Simulation of bi-directional pedestrian flow under high densities using a modified social force model

Author

Listed:
  • Jin, Cheng-Jie
  • Shi, Ke-Da
  • Jiang, Rui
  • Li, Dawei
  • Fang, Shuyi

Abstract

The social force model has been widely used in pedestrian flow studies, but its limitations are also clear. Especially at high densities, it cannot simulate the lane formation in bi-directional flow. Therefore, in order to solve this problem, we propose a new modified social force model. The values of many parameters are reset by sensitivity analysis. In particular, we introduce a new parameter named deflection distance, which becomes a great help for modeling. Based on the video data collected from four large-scale experiments, the validity and robustness of our model are verified. The simulation results in the ring road show that the proposed model can describe the bi-directional movement well: the lane formation can be successful even when the density is as high as 9 ped/m2, and the fundamental diagrams after lane formation can be quantitatively similar to that reported in the experiments. In addition, the simulation results in the straight corridor also help to validate our model.

Suggested Citation

  • Jin, Cheng-Jie & Shi, Ke-Da & Jiang, Rui & Li, Dawei & Fang, Shuyi, 2023. "Simulation of bi-directional pedestrian flow under high densities using a modified social force model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004605
    DOI: 10.1016/j.chaos.2023.113559
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923004605
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113559?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haghani, Milad & Sarvi, Majid, 2018. "Crowd behaviour and motion: Empirical methods," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 253-294.
    2. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    3. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    4. Sticco, I.M. & Frank, G.A. & Dorso, C.O., 2021. "Social Force Model parameter testing and optimization using a high stress real-life situation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    5. Zhang, Dawei & Zhu, Haitao & Hostikka, Simo & Qiu, Shi, 2019. "Pedestrian dynamics in a heterogeneous bidirectional flow: Overtaking behaviour and lane formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 72-84.
    6. Qu, Yunchao & Xiao, Yao & Wu, Jianjun & Tang, Tao & Gao, Ziyou, 2018. "Modeling detour behavior of pedestrian dynamics under different conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1153-1167.
    7. Li, Wenhang & Gong, Jianhua & Yu, Ping & Shen, Shen & Li, Rong & Duan, Qishen, 2015. "Simulation and analysis of congestion risk during escalator transfers using a modified social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 28-40.
    8. Jin, Cheng-Jie & Jiang, Rui & Liu, Tongfei & Li, Dawei & Wang, Hao & Liu, Xianglong, 2021. "Pedestrian dynamics with different corridor widths: Investigation on a series of uni-directional and bi-directional experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    9. Parisi, Daniel R. & Gilman, Marcelo & Moldovan, Herman, 2009. "A modification of the Social Force Model can reproduce experimental data of pedestrian flows in normal conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3600-3608.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Xiangmin & Chen, Tao, 2024. "Crowd dynamics of self-propelled individuals with collision avoidance considering anticipation and intrusion aversion," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    2. Yang, Junheng & Zang, Xiaodong & Chen, Weiying & Luo, Qiang & Wang, Rui & Liu, Yuanqian, 2024. "Improved social force model based on pedestrian collision avoidance behavior in counterflow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    3. Tian, Jiangtao & Li, Xingli & Guo, Qinghua & Kuang, Hua, 2024. "Dynamics characteristic of pedestrians’ particular overtaking behavior based on an improved social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng-Jie Jin & Ke-Da Shi & Shu-Yi Fang, 2023. "Simulation of Single-File Pedestrian Flow under High-Density Condition by a Modified Social Force Model," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    2. Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    3. Fang, Shuyi & Jin, Cheng-Jie & Jiang, Rui & Li, Dawei, 2024. "Simulating the bi-directional pedestrian flow under high densities by a floor field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    4. Li, Shuying & Zhuang, Jun & Shen, Shifei & Wang, Jia, 2017. "Driving-forces model on individual behavior in scenarios considering moving threat agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 127-140.
    5. Ding, Ning & Zhu, Yu & Liu, Xinyan & Dong, Dapeng & Wang, Yang, 2024. "A modified social force model for crowd evacuation considering collision predicting behaviors," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    6. Li, Zhenning & Xu, Chengzhong & Bian, Zilin, 2022. "A force-driven model for passenger evacuation in bus fires," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    7. Stock, Eduardo Velasco & da Silva, Roberto, 2023. "Lattice gas model to describe a nightclub dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Xianing Wang & Zhan Zhang & Ying Wang & Jun Yang & Linjun Lu, 2022. "A Study on Safety Evaluation of Pedestrian Flows Based on Partial Impact Dynamics by Real-Time Data in Subway Stations," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    9. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    10. Liu, Jing & Jia, Yang & Mao, Tianlu & Wang, Zhaoqi, 2022. "Modeling and simulation analysis of crowd evacuation behavior under terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    11. Xie, Chuan-Zhi & Tang, Tie-Qiao & Hu, Peng-Cheng & Chen, Liang, 2022. "Observation and cellular-automaton based modeling of pedestrian behavior on an escalator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    12. Fu, Libi & Liu, Yuxing & Shi, Yongqian & Zhao, Yongxiang, 2021. "Dynamics of bidirectional pedestrian flow in a corridor including individuals with disabilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    13. Hu, Xiangmin & Chen, Tao & Deng, Kaifeng & Wang, Guanning, 2023. "Effects of aggressiveness on pedestrian room evacuation using extended cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    14. Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Data-driven framework for the adaptive exit selection problem in pedestrian flow: Visual information based heuristics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    15. Yamamoto, Hiroki & Yanagisawa, Daichi & Feliciani, Claudio & Nishinari, Katsuhiro, 2019. "Body-rotation behavior of pedestrians for collision avoidance in passing and cross flow," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 486-510.
    16. Yu Song & Jia Liu & Qian Liu, 2021. "Dynamic Decision-Making Process of Evacuees during Post-Earthquake Evacuation near an Automatic Flap Barrier Gate System: A Broken Windows Perspective," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    17. Zhang, Zhao & Fu, Daocheng, 2022. "Modeling pedestrian–vehicle mixed-flow in a complex evacuation scenario," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    18. Sun, Yi, 2018. "Kinetic Monte Carlo simulations of two-dimensional pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 836-847.
    19. Xu, Qiancheng & Chraibi, Mohcine & Tordeux, Antoine & Zhang, Jun, 2019. "Generalized collision-free velocity model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    20. Li, Wenhang & Gong, Jianhua & Yu, Ping & Shen, Shen, 2016. "Modeling, simulation and analysis of group trampling risks during escalator transfers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 970-984.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.