IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v170y2023ics0960077923002771.html
   My bibliography  Save this article

The coevolution of the spread of a disease and competing opinions in multiplex networks

Author

Listed:
  • Fang, Fanshu
  • Ma, Jing
  • Li, Yanli

Abstract

The COVID-19 pandemic has resulted in a proliferation of conflicting opinions on physical distancing across various media platforms, which has had a significant impact on human behavior and the transmission dynamics of the disease. Inspired by this social phenomenon, we present a novel UAP-SIS model to study the interaction between conflicting opinions and epidemic spreading in multiplex networks, in which individual behavior is based on diverse opinions. We distinguish susceptibility and infectivity among individuals who are unaware, pro-physical distancing and anti-physical distancing, and we incorporate three kinds of mechanisms for generating individual awareness. The coupled dynamics are analyzed in terms of a microscopic Markov chain approach that encompasses the aforementioned elements. With this model, we derive the epidemic threshold which is related to the diffusion of competing opinions and their coupling configuration. Our findings demonstrate that the transmission of the disease is shaped in a significant manner by conflicting opinions, due to the complex interaction between such opinions and the disease itself. Furthermore, the implementation of awareness-generating mechanisms can help to mitigate the overall prevalence of the epidemic, and global awareness and self-awareness can be interchangeable in certain instances. To effectively curb the spread of epidemics, policymakers should take steps to regulate social media and promote physical distancing as the mainstream opinion.

Suggested Citation

  • Fang, Fanshu & Ma, Jing & Li, Yanli, 2023. "The coevolution of the spread of a disease and competing opinions in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002771
    DOI: 10.1016/j.chaos.2023.113376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923002771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicola Bellomo & Richard Bingham & Mark A.J. Chaplain & Giovanni Dosi & Guido Forni & Damian A. Knopoff & John Lowengrub & Reidun Twarock & Maria Enrica Virgillito, 2020. "A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world," LEM Papers Series 2020/16, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Daniel J McGrail & Jianli Dai & Kathleen M McAndrews & Raghu Kalluri, 2020. "Enacting national social distancing policies corresponds with dramatic reduction in COVID19 infection rates," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-9, July.
    3. Zhan, Xiu-Xiu & Liu, Chuang & Sun, Gui-Quan & Zhang, Zi-Ke, 2018. "Epidemic dynamics on information-driven adaptive networks," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 196-204.
    4. Quantong Guo & Yanjun Lei & Chengyi Xia & Lu Guo & Xin Jiang & Zhiming Zheng, 2016. "The Role of Node Heterogeneity in the Coupled Spreading of Epidemics and Awareness," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiyong Hong & Huiyu Zhou & Zhishuang Wang & Qian Yin & Jingang Liu, 2023. "Coupled Propagation Dynamics of Information and Infectious Disease on Two-Layer Complex Networks with Simplices," Mathematics, MDPI, vol. 11(24), pages 1-17, December.
    2. Joshua Mugambwa & Diana Nandagire Ntamu & Godwin Kwemarira & Luke Sewante & Mahadih Kyambade, 2024. "Co-evolution and Fisheries Policy Implementation in Sub Saharan Africa," Public Organization Review, Springer, vol. 24(1), pages 259-280, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2019. "Interacting model of rumor propagation and behavior spreading in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 168-177.
    2. Zhan, Xiu-Xiu & Liu, Chuang & Zhou, Ge & Zhang, Zi-Ke & Sun, Gui-Quan & Zhu, Jonathan J.H. & Jin, Zhen, 2018. "Coupling dynamics of epidemic spreading and information diffusion on complex networks," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 437-448.
    3. Li, Wenyao & Cai, Meng & Zhong, Xiaoni & Liu, Yanbing & Lin, Tao & Wang, Wei, 2023. "Coevolution of epidemic and infodemic on higher-order networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Haruka Kato & Atsushi Takizawa, 2022. "Impact of the Urban Exodus Triggered by the COVID-19 Pandemic on the Shrinking Cities of the Osaka Metropolitan Area," Sustainability, MDPI, vol. 14(3), pages 1-13, January.
    5. Lukas Zenk & Gerald Steiner & Miguel Pina e Cunha & Manfred D. Laubichler & Martin Bertau & Martin J. Kainz & Carlo Jäger & Eva S. Schernhammer, 2020. "Fast Response to Superspreading: Uncertainty and Complexity in the Context of COVID-19," IJERPH, MDPI, vol. 17(21), pages 1-13, October.
    6. Trang VoPham & Matthew D. Weaver & Gary Adamkiewicz & Jaime E. Hart, 2021. "Social Distancing Associations with COVID-19 Infection and Mortality Are Modified by Crowding and Socioeconomic Status," IJERPH, MDPI, vol. 18(9), pages 1-8, April.
    7. Dun, Han & Shuting, Yan & She, Han & Lingfei, Qian & Chris, Ampimah Benjamin, 2019. "Research on how the difference of personal propagation ability influences the epidemic spreading in activity-driven network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 311-318.
    8. Kumar, Viney & Bhattacharyya, Samit, 2023. "Nonlinear effect of sentiments and opinion sharing on vaccination decision in face of an outbreak: A multiplex network approach," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    9. Alfredo García & Christopher Hartwell & Martín Andrés Szybisz, 2021. "Defying Gravity: The Economic Effects of Social Distancing," Asociación Argentina de Economía Política: Working Papers 4477, Asociación Argentina de Economía Política.
    10. Giovanni Dosi, 2021. "Some policy lessons from medical/therapeutic responses to the COVID-19 Crisis: A rich research system for knowledge generation and dysfunctional institutions for its exploitation," LEM Papers Series 2021/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    11. Li, Chao & Wang, Li & Sun, Shiwen & Xia, Chengyi, 2018. "Identification of influential spreaders based on classified neighbors in real-world complex networks," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 512-523.
    12. Timo Mitze & Reinhold Kosfeld, 2022. "The propagation effect of commuting to work in the spatial transmission of COVID-19," Journal of Geographical Systems, Springer, vol. 24(1), pages 5-31, January.
    13. Peter Flaschel & Giorgos Galanis & Daniele Tavani & Roberto Veneziani, 2021. "Pandemics and Aggregate Demand: a Framework for Policy Analysis," Working Papers PKWP2025, Post Keynesian Economics Society (PKES).
    14. Simone Trevas & Kathleen Manuel & Raja Malkani & Deanna Hoelscher, 2023. "Mask Adherence and Social Distancing in Houston, TX from January to April 2021," IJERPH, MDPI, vol. 20(3), pages 1-8, February.
    15. Amanda M. Y. Chu & Thomas W. C. Chan & Mike K. P. So & Wing-Keung Wong, 2021. "Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model," IJERPH, MDPI, vol. 18(6), pages 1-22, March.
    16. Songhua Hu & Weiyu Luo & Aref Darzi & Yixuan Pan & Guangchen Zhao & Yuxuan Liu & Chenfeng Xiong, 2021. "Do racial and ethnic disparities in following stay-at-home orders influence COVID-19 health outcomes? A mediation analysis approach," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-22, November.
    17. Giovanni Dosi, 2021. "Policy Lessons From Medical Responses to the COVID-19 Crisis," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 56(6), pages 337-340, November.
    18. Liu, Chuang & Zhou, Nan & Zhan, Xiu-Xiu & Sun, Gui-Quan & Zhang, Zi-Ke, 2020. "Markov-based solution for information diffusion on adaptive social networks," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    19. Wang, Jun & Cai, Shimin & Wang, Wei & Zhou, Tao, 2023. "Link cooperation effect of cooperative epidemics on complex networks," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    20. Maira Aguiar & Giovanni Dosi & Damian A. Knopoff & Maria Enrica Virgillito, 2021. "A multiscale network-based model of contagion dynamics: heterogeneity, spatial distancing and vaccination," LEM Papers Series 2021/24, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.