IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v167y2023ics0960077922011717.html
   My bibliography  Save this article

Symbolic convergent cross mapping based on permutation mutual information

Author

Listed:
  • Ge, Xinlei
  • Lin, Aijing

Abstract

In this paper, we extend convergent cross mapping (CCM) and propose symbolic CCM (SCCM), which uses mutual information based on permutation pattern instead of Pearson correlation coefficient to estimate cross-mapping ability. We numerically demonstrate that SCCM is a robust method for quantifying information flow between time series in chaotic systems, even under the influence of noises. Using the method, we analyze the multichannel EEG signals of ADHD children and control children, and identify the differences between the two groups of subjects with reliable results.

Suggested Citation

  • Ge, Xinlei & Lin, Aijing, 2023. "Symbolic convergent cross mapping based on permutation mutual information," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:chsofr:v:167:y:2023:i:c:s0960077922011717
    DOI: 10.1016/j.chaos.2022.112992
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922011717
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112992?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albert C. Yang & Chung-Kang Peng & Norden E. Huang, 2018. "Causal decomposition in the mutual causation system," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Jakob Runge & Sebastian Bathiany & Erik Bollt & Gustau Camps-Valls & Dim Coumou & Ethan Deyle & Clark Glymour & Marlene Kretschmer & Miguel D. Mahecha & Jordi Muñoz-Marí & Egbert H. Nes & Jonas Peters, 2019. "Inferring causation from time series in Earth system sciences," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    3. Guo, Zhen & Hao, Mengyan & Yu, Bin & Yao, Baozhen, 2022. "Detecting delay propagation in regional air transport systems using convergent cross mapping and complex network theory," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schuessler, Julian, 2024. "Causal analysis with observational data," OSF Preprints wam94, Center for Open Science.
    2. Sourav Mukherjee & Ashok Kumar Mishra & Jakob Zscheischler & Dara Entekhabi, 2023. "Interaction between dry and hot extremes at a global scale using a cascade modeling framework," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Li, Qiang & Wu, Lu & Guan, Xinjia & Tian, Ze-jin, 2024. "Interplay of network topologies in aviation delay propagation: A complex network and machine learning analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    4. Jakob Runge, 2023. "Modern causal inference approaches to investigate biodiversity-ecosystem functioning relationships," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    5. Se Ho Park & Seokmin Ha & Jae Kyoung Kim, 2023. "A general model-based causal inference method overcomes the curse of synchrony and indirect effect," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Wang, Yanjun & Li, Max Z. & Gopalakrishnan, Karthik & Liu, Tongdan, 2022. "Timescales of delay propagation in airport networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    7. Cai, Yunhao & Jing, Peng & Wang, Baihui & Jiang, Chengxi & Wang, Yuan, 2023. "How does “over-hype” lead to public misconceptions about autonomous vehicles? A new insight applying causal inference," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    8. Albert C. Yang & Chung-Kang Peng & Norden E. Huang, 2022. "Reply To: Comments on identifying causal relationships in nonlinear dynamical systems via empirical mode decomposition," Nature Communications, Nature, vol. 13(1), pages 1-3, December.
    9. Cho, Jung-Hoon & Kim, Dong-Kyu & Kim, Eui-Jin, 2022. "Multi-scale causality analysis between COVID-19 cases and mobility level using ensemble empirical mode decomposition and causal decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    10. Muszkats, J.P. & Muszkats, S.R. & Zitto, M.E. & Piotrkowski, R., 2024. "A statistical analysis of causal decomposition methods applied to Earth system time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    11. Lucile Ricard & Fabrizio Falasca & Jakob Runge & Athanasios Nenes, 2024. "network-based constraint to evaluate climate sensitivity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Ma, Hoi-Lam & Sun, Yige & Chung, Sai-Ho & Chan, Hing Kai, 2022. "Tackling uncertainties in aircraft maintenance routing: A review of emerging technologies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    13. van Elteren, Casper & Quax, Rick & Sloot, Peter, 2022. "Dynamic importance of network nodes is poorly predicted by static structural features," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    14. Chen, Shenwen & Du, Wenbo & Liu, Runran & Cao, Xianbin, 2023. "Finding spatial and temporal features of delay propagation via multi-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    15. Sebastiano Trevisani & Pietro Daniel Omodeo, 2021. "Earth Scientists and Sustainable Development: Geocomputing, New Technologies, and the Humanities," Land, MDPI, vol. 10(3), pages 1-17, March.
    16. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    17. Mao, Xuegeng & Yang, Albert C. & Peng, Chung-Kang & Shang, Pengjian, 2020. "Analysis of economic growth fluctuations based on EEMD and causal decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    18. Abbas, Khizar & Han, Mengyao & Xu, Deyi & Butt, Khalid Manzoor & Baz, Khan & Cheng, Jinhua & Zhu, Yongguang & Hussain, Sanwal, 2024. "Exploring synergistic and individual causal effects of rare earth elements and renewable energy on multidimensional economic complexity for sustainable economic development," Applied Energy, Elsevier, vol. 364(C).
    19. Bingbo Gao & Jianyu Yang & Ziyue Chen & George Sugihara & Manchun Li & Alfred Stein & Mei-Po Kwan & Jinfeng Wang, 2023. "Causal inference from cross-sectional earth system data with geographical convergent cross mapping," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Kunxiaojia Yuan & Fa Li & Gavin McNicol & Min Chen & Alison Hoyt & Sara Knox & William J. Riley & Robert Jackson & Qing Zhu, 2024. "Boreal–Arctic wetland methane emissions modulated by warming and vegetation activity," Nature Climate Change, Nature, vol. 14(3), pages 282-288, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:167:y:2023:i:c:s0960077922011717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.