IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v165y2022ip1s0960077922009420.html
   My bibliography  Save this article

Stochastic chaos in chemical Lorenz system: Interplay of intrinsic noise and nonlinearity

Author

Listed:
  • Thounaojam, Umeshkanta Singh

Abstract

In this paper, we address the question of whether the phenomenon of chaos can occur in a purely stochastic system or not. We show that chaos can arise in a purely stochastic chemical Lorenz system. A robust regime of stochastic chaos develops like the onset of chaos in a deterministic system. Stochastic trajectories, which are initially very close, show sensitivity to initial states where they diverge exponentially as time progress. The interplay of nonlinearity and intrinsic noise in the chemical Lorenz system is studied to understand the effect of intrinsic noise. We observe that intrinsic noise can destabilize the fixed points and limit cycle attractors where stochastic trajectories make excursions along the unstable manifold, giving rise to the noisy chaotic attractors. This study uses quantitative measures like power spectrums and invariant measures to characterize the strange noisy attractors. Our study establishes that the interplay of intrinsic noise and nonlinearity gives rise to chaos in the stochastic Lorenz system.

Suggested Citation

  • Thounaojam, Umeshkanta Singh, 2022. "Stochastic chaos in chemical Lorenz system: Interplay of intrinsic noise and nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
  • Handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009420
    DOI: 10.1016/j.chaos.2022.112763
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922009420
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112763?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2003. "Fluctuations and response in financial markets: the subtle nature of `random' price changes," Papers cond-mat/0307332, arXiv.org, revised Aug 2003.
    2. William J. Blake & Mads KÆrn & Charles R. Cantor & J. J. Collins, 2003. "Noise in eukaryotic gene expression," Nature, Nature, vol. 422(6932), pages 633-637, April.
    3. Christopher V. Rao & Denise M. Wolf & Adam P. Arkin, 2002. "Control, exploitation and tolerance of intracellular noise," Nature, Nature, vol. 420(6912), pages 231-237, November.
    4. Mikhaylov, A.N. & Guseinov, D.V. & Belov, A.I. & Korolev, D.S. & Shishmakova, V.A. & Koryazhkina, M.N. & Filatov, D.O. & Gorshkov, O.N. & Maldonado, D. & Alonso, F.J. & Roldán, J.B. & Krichigin, A.V. , 2021. "Stochastic resonance in a metal-oxide memristive device," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    5. Filatov, D.O. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Shenina, M.E. & Antonov, I.N. & Gorshkov, O.N. & Agudov, N.V. & Carollo, A. & Valenti, D. & Spagnolo, B., 2022. "Effect of internal noise on the relaxation time of an yttria stabilized zirconia-based memristor," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jie & Li, Chunbiao & Zhang, Qian & Zhang, Xin & Wu, Zhihao & Zhong, Haidong & Liu, Peiqiao & Liu, Zuohua & Tao, Changyuan & Huang, Keyu & Li, Jiaxing & Zheng, Guocan, 2024. "A memristive hyperchaotic oscillator with complete control and its application in the electrolysis of manganese," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koryazhkina, M.N. & Filatov, D.O. & Shishmakova, V.A. & Shenina, M.E. & Belov, A.I. & Antonov, I.N. & Kotomina, V.E. & Mikhaylov, A.N. & Gorshkov, O.N. & Agudov, N.V. & Guarcello, C. & Carollo, A. & S, 2022. "Resistive state relaxation time in ZrO2(Y)-based memristive devices under the influence of external noise," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Yu, Xingwang & Ma, Yuanlin, 2022. "Steady-state analysis of the stochastic Beverton-Holt growth model driven by correlated colored noises," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Benjamin B Kaufmann & Qiong Yang & Jerome T Mettetal & Alexander van Oudenaarden, 2007. "Heritable Stochastic Switching Revealed by Single-Cell Genealogy," PLOS Biology, Public Library of Science, vol. 5(9), pages 1-8, September.
    4. Burton W Andrews & Pablo A Iglesias, 2007. "An Information-Theoretic Characterization of the Optimal Gradient Sensing Response of Cells," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-9, August.
    5. Arantxa Urchueguía & Luca Galbusera & Dany Chauvin & Gwendoline Bellement & Thomas Julou & Erik van Nimwegen, 2021. "Genome-wide gene expression noise in Escherichia coli is condition-dependent and determined by propagation of noise through the regulatory network," PLOS Biology, Public Library of Science, vol. 19(12), pages 1-22, December.
    6. Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. R'emy Chicheportiche & Jean-Philippe Bouchaud, 2012. "The fine-structure of volatility feedback I: multi-scale self-reflexivity," Papers 1206.2153, arXiv.org, revised Sep 2013.
    8. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    9. Svitlana Vyetrenko & David Byrd & Nick Petosa & Mahmoud Mahfouz & Danial Dervovic & Manuela Veloso & Tucker Hybinette Balch, 2019. "Get Real: Realism Metrics for Robust Limit Order Book Market Simulations," Papers 1912.04941, arXiv.org.
    10. Aurélien Alfonsi & Alexander Schied, 2010. "Optimal trade execution and absence of price manipulations in limit order book models," Post-Print hal-00397652, HAL.
    11. Lucy Ham & Megan A. Coomer & Kaan Öcal & Ramon Grima & Michael P. H. Stumpf, 2024. "A stochastic vs deterministic perspective on the timing of cellular events," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    13. Jin, Yanfei & Wang, Haotian & Xu, Pengfei, 2023. "Noise-induced enhancement of stability and resonance in a tri-stable system with time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    14. Blasi, Monica Francesca & Casorelli, Ida & Colosimo, Alfredo & Blasi, Francesco Simone & Bignami, Margherita & Giuliani, Alessandro, 2005. "A recursive network approach can identify constitutive regulatory circuits in gene expression data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 349-370.
    15. Ted Theodosopoulos, 2004. "Uncertainty relations in models of market microstructure," Papers math/0409076, arXiv.org, revised Feb 2005.
    16. Su, Zhifang & Bao, Haohua & Li, Qifang & Xu, Boyu & Cui, Xin, 2022. "The prediction of price gap anomaly in Chinese stock market: Evidence from the dependent functional logit model," Finance Research Letters, Elsevier, vol. 47(PB).
    17. Andrea Macr`i & Fabrizio Lillo, 2024. "Reinforcement Learning for Optimal Execution when Liquidity is Time-Varying," Papers 2402.12049, arXiv.org, revised Feb 2024.
    18. Filatov, D.O. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Shenina, M.E. & Antonov, I.N. & Gorshkov, O.N. & Agudov, N.V. & Carollo, A. & Valenti, D. & Spagnolo, B., 2022. "Effect of internal noise on the relaxation time of an yttria stabilized zirconia-based memristor," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    19. Emilio Said, 2022. "Market Impact: Empirical Evidence, Theory and Practice," Working Papers hal-03668669, HAL.
    20. Ai, Hao & Yang, GuiJiang & Liu, Wei & Wang, Qiubao, 2023. "A fast search method for optimal parameters of stochastic resonance based on stochastic bifurcation and its application in fault diagnosis of rolling bearings," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.