IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v158y2022ics0960077922003125.html
   My bibliography  Save this article

Steady-state analysis of the stochastic Beverton-Holt growth model driven by correlated colored noises

Author

Listed:
  • Yu, Xingwang
  • Ma, Yuanlin

Abstract

In this paper, we investigate a single population growth model with Beverton-Holt function, which is driven by cross-correlation between multiplicative and additive colored noises. Firstly, using approximate Fokker-Planck equation, the stationary probability distribution of the model is obtained, and then its the shape structure is discussed in detail. In addition, the influence of noise characteristics on mean, variance and skewness is studied numerically. Finally, an explicit expression of the mean first passage time is given by using the steepest-descent approximation. It is found that: (i) the P-bifurcation occurs when the two noises are positively correlated or zero correlated, but not in the case of negative correlation; (ii) a strong negative correlation degree and correlation time can promote population growth, while the strong positive correlation degree plays an opposite role; (iii) the noise enhanced stability induced by multiplicative noise is different from that induced by the additive one.

Suggested Citation

  • Yu, Xingwang & Ma, Yuanlin, 2022. "Steady-state analysis of the stochastic Beverton-Holt growth model driven by correlated colored noises," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922003125
    DOI: 10.1016/j.chaos.2022.112102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922003125
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Mengdi & Shi, Peiming & Zhang, Wenyue & Han, Dongying, 2021. "A novel underdamped continuous unsaturation bistable stochastic resonance method and its application," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. D. Mei & C. Xie & L. Zhang, 2004. "The stationary properties and the state transition of the tumor cell growth mode," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 41(1), pages 107-112, September.
    3. Wang, Kang-Kang & Ju, Lin & Wang, Ya-Jun & Li, Sheng-Hong, 2018. "Impact of colored cross-correlated non-Gaussian and Gaussian noises on stochastic resonance and stochastic stability for a metapopulation system driven by a multiplicative signal," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 166-181.
    4. Spagnolo, B. & La Barbera, A., 2002. "Role of the noise on the transient dynamics of an ecosystem of interacting species," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 315(1), pages 114-124.
    5. Bashkirtseva, Irina & Kolinichenko, Alexander & Ryashko, Lev, 2021. "Stochastic sensitivity of Turing patterns: methods and applications to the analysis of noise-induced transitions," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    6. Mikhaylov, A.N. & Guseinov, D.V. & Belov, A.I. & Korolev, D.S. & Shishmakova, V.A. & Koryazhkina, M.N. & Filatov, D.O. & Gorshkov, O.N. & Maldonado, D. & Alonso, F.J. & Roldán, J.B. & Krichigin, A.V. , 2021. "Stochastic resonance in a metal-oxide memristive device," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    7. Al-Ghassani, Asma S. & AlSharawi, Ziyad, 2020. "The effect of maps permutation on the global attractor of a periodic Beverton–Holt model," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    8. Lin, Qiao-Feng & Wang, Can-Jun & Yang, Ke-Li & Tian, Meng-Yu & Wang, Ya & Dai, Jia-Liang, 2019. "Cross-correlated bounded noises induced the population extinction and enhancement of stability in a population growth model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1046-1057.
    9. Filatov, D.O. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Shenina, M.E. & Antonov, I.N. & Gorshkov, O.N. & Agudov, N.V. & Carollo, A. & Valenti, D. & Spagnolo, B., 2022. "Effect of internal noise on the relaxation time of an yttria stabilized zirconia-based memristor," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    10. Hussain, Javed & Bano, Zarqa & Ahmed, Waleed & Shahid, Saba, 2022. "Analysis of stochastic dynamics of tumor with drug interventions," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanlin Ma & Xingwang Yu, 2022. "Stationary Probability Density Analysis for the Randomly Forced Phytoplankton–Zooplankton Model with Correlated Colored Noises," Mathematics, MDPI, vol. 10(14), pages 1-11, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jian & Qiao, Zijian & Ding, Xiaojian & Hu, Bing & Zang, Chuanlai, 2021. "Stochastic resonance induced weak signal enhancement over controllable potential-well asymmetry," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Zhang, Wenyue & Shi, Peiming & Li, Mengdi & Han, Dongying, 2021. "A novel stochastic resonance model based on bistable stochastic pooling network and its application," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    3. Li, Mengdi & Shi, Peiming & Zhang, Wenyue & Han, Dongying, 2021. "A novel underdamped continuous unsaturation bistable stochastic resonance method and its application," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Ai, Hao & Yang, GuiJiang & Liu, Wei & Wang, Qiubao, 2023. "A fast search method for optimal parameters of stochastic resonance based on stochastic bifurcation and its application in fault diagnosis of rolling bearings," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Koryazhkina, M.N. & Filatov, D.O. & Shishmakova, V.A. & Shenina, M.E. & Belov, A.I. & Antonov, I.N. & Kotomina, V.E. & Mikhaylov, A.N. & Gorshkov, O.N. & Agudov, N.V. & Guarcello, C. & Carollo, A. & S, 2022. "Resistive state relaxation time in ZrO2(Y)-based memristive devices under the influence of external noise," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Yuanlin Ma & Xingwang Yu, 2022. "Stationary Probability Density Analysis for the Randomly Forced Phytoplankton–Zooplankton Model with Correlated Colored Noises," Mathematics, MDPI, vol. 10(14), pages 1-11, July.
    7. Park, Jinwoo & Kim, Tae-Hyeon & Kim, Sungjoon & Lee, Geun Ho & Nili, Hussein & Kim, Hyungjin, 2021. "Conduction mechanism effect on physical unclonable function using Al2O3/TiOX memristors," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Ren, Yuhao & Pan, Yan & Duan, Fabing, 2022. "SNR gain enhancement in a generalized matched filter using artificial optimal noise," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    9. Thounaojam, Umeshkanta Singh, 2022. "Stochastic chaos in chemical Lorenz system: Interplay of intrinsic noise and nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    10. Agudov, N.V. & Dubkov, A.A. & Safonov, A.V. & Krichigin, A.V. & Kharcheva, A.A. & Guseinov, D.V. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Antonov, I.N. & Carollo, A. & Spagnolo, B., 2021. "Stochastic model of memristor based on the length of conductive region," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    11. Ping, Zhu, 2023. "Analytical equivalent transformation method for nonlinear stochastic dynamics with multiple noises in high dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    12. Rao, Feng & Wang, Weiming & Li, Zhenqing, 2009. "Spatiotemporal complexity of a predator–prey system with the effect of noise and external forcing," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1634-1644.
    13. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    14. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    15. Setoudeh, Farbod & Dezhdar, Mohammad Matin & Najafi, M., 2022. "Nonlinear analysis and chaos synchronization of a memristive-based chaotic system using adaptive control technique in noisy environments," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    16. Chun Zhang & Tao Yang & Shi-Xian Qu, 2021. "Impact of time delays and environmental noise on the extinction of a population dynamics model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(11), pages 1-16, November.
    17. Huang, Dongwei & Wang, Hongli & Feng, Jianfeng & Zhu, Zhi-wen, 2006. "Hopf bifurcation of the stochastic model on HAB nonlinear stochastic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 1072-1079.
    18. Yang, GuiJiang & Ai, Hao & Liu, Wei & Wang, Qiubao, 2023. "Weak signal detection based on variable-situation-potential with time-delay feedback and colored noise," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    19. Jin, Yanfei & Wang, Haotian & Xu, Pengfei, 2023. "Noise-induced enhancement of stability and resonance in a tri-stable system with time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    20. Fang, Yuwen & Luo, Yuhui & Ma, Zhiqing & Zeng, Chunhua, 2021. "Transport and diffusion in the Schweitzer–Ebeling–Tilch model driven by cross-correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922003125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.