IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v415y2002i6867d10.1038_415039a.html
   My bibliography  Save this article

Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms

Author

Listed:
  • Markus Greiner

    (Sektion Physik, Ludwig-Maximilians-Universität
    Max-Planck-Institut für Quantenoptik)

  • Olaf Mandel

    (Sektion Physik, Ludwig-Maximilians-Universität
    Max-Planck-Institut für Quantenoptik)

  • Tilman Esslinger

    (Quantenelektronik, ETH Zürich)

  • Theodor W. Hänsch

    (Sektion Physik, Ludwig-Maximilians-Universität
    Max-Planck-Institut für Quantenoptik)

  • Immanuel Bloch

    (Sektion Physik, Ludwig-Maximilians-Universität
    Max-Planck-Institut für Quantenoptik)

Abstract

For a system at a temperature of absolute zero, all thermal fluctuations are frozen out, while quantum fluctuations prevail. These microscopic quantum fluctuations can induce a macroscopic phase transition in the ground state of a many-body system when the relative strength of two competing energy terms is varied across a critical value. Here we observe such a quantum phase transition in a Bose–Einstein condensate with repulsive interactions, held in a three-dimensional optical lattice potential. As the potential depth of the lattice is increased, a transition is observed from a superfluid to a Mott insulator phase. In the superfluid phase, each atom is spread out over the entire lattice, with long-range phase coherence. But in the insulating phase, exact numbers of atoms are localized at individual lattice sites, with no phase coherence across the lattice; this phase is characterized by a gap in the excitation spectrum. We can induce reversible changes between the two ground states of the system.

Suggested Citation

  • Markus Greiner & Olaf Mandel & Tilman Esslinger & Theodor W. Hänsch & Immanuel Bloch, 2002. "Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms," Nature, Nature, vol. 415(6867), pages 39-44, January.
  • Handle: RePEc:nat:nature:v:415:y:2002:i:6867:d:10.1038_415039a
    DOI: 10.1038/415039a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/415039a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/415039a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Chen & Chenxi Huang & Ivan Velkovsky & Kaden R. A. Hazzard & Jacob P. Covey & Bryce Gadway, 2024. "Strongly interacting Rydberg atoms in synthetic dimensions with a magnetic flux," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Rizzatti, Eduardo Osório & Gomes Filho, Márcio Sampaio & Malard, Mariana & Barbosa, Marco Aurélio A., 2019. "Waterlike anomalies in the Bose–Hubbard model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 323-330.
    3. Barrios, Alan J. & Valdés-Hernández, Andrea & Sevilla, Francisco J., 2022. "Dynamics of mode entanglement induced by particle-tunneling in the extended Bose–Hubbard dimer model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    4. Beini Gao & Daniel G. Suárez-Forero & Supratik Sarkar & Tsung-Sheng Huang & Deric Session & Mahmoud Jalali Mehrabad & Ruihao Ni & Ming Xie & Pranshoo Upadhyay & Jonathan Vannucci & Sunil Mittal & Kenj, 2024. "Excitonic Mott insulator in a Bose-Fermi-Hubbard system of moiré WS2/WSe2 heterobilayer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Mieck, B., 2003. "Functional integral and transfer-matrix approach for 1D bosonic many-body systems with a contact potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 325(3), pages 439-454.
    6. Shi, Zeyun & Badshah, Fazal & Qin, Lu & Zhou, Yuan & Huang, Haibo & Zhang, Yong-Chang, 2023. "Spatially modulated control of pattern formation in a general nonlocal nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    7. Jiang, Xunda & Zeng, Yue & Ji, Yikai & Liu, Bin & Qin, Xizhou & Li, Yongyao, 2022. "Vortex formation and quench dynamics of rotating quantum droplets," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    8. Liu, Xiuye & Zeng, Jianhua, 2022. "Overcoming the snaking instability and nucleation of dark solitons in nonlinear Kerr media by spatially inhomogeneous defocusing nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    9. Liu, Xiuye & Zeng, Jianhua, 2023. "Matter-wave gap solitons and vortices of dense Bose–Einstein condensates in Moiré optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Yoshito Watanabe & Atsushi Miyake & Masaki Gen & Yuta Mizukami & Kenichiro Hashimoto & Takasada Shibauchi & Akihiko Ikeda & Masashi Tokunaga & Takashi Kurumaji & Yusuke Tokunaga & Taka-hisa Arima, 2023. "Double dome structure of the Bose–Einstein condensation in diluted S = 3/2 quantum magnets," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Meng, Hongjuan & Zhou, Yushan & Li, Xiaolin & Ren, Xueping & Wan, Xiaohuan & Zhou, Zhikun & Wang, Wenyuan & Shi, Yuren, 2021. "Gap solitons in Bose–Einstein condensate loaded in a honeycomb optical lattice: Nonlinear dynamical stability, tunneling, and self-trapping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:415:y:2002:i:6867:d:10.1038_415039a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.