IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v175y2023ip2s0960077923009736.html
   My bibliography  Save this article

Two-dimensional symbiotic solitons and quantum droplets in a quasi-one-dimensional optical lattice

Author

Listed:
  • Al-Marzoug, S.M.
  • Baizakov, B.B.
  • Bahlouli, H.

Abstract

Symbiotic solitons (SS) and quantum droplets (QD) are self-trapped localized modes emerging in binary Bose-gas mixtures with intra-component repulsion and inter-component attraction. We have shown that two-dimensional (2D) SS can be stabilized against collapse or decay by means of a quasi-one-dimensional optical lattice (OL). Mobility of SSs along the free direction of the potential allows us to explore interactions and collisions of SSs moving in the same channel and neighboring channels of the quasi-1D OL. For the case of equal atom numbers in both components of the binary Bose–Einstein condensate (BEC) we have developed a variational approach that showed the stability of SS. For parameter settings when the SS stays on the verge of collapse/decay instability we take into account the Lee–Huang–Yang quantum fluctuations (QF) term in the coupled Gross–Pitaevskii equations (GPE). The QF term in the 2D GPE has the form of nonlinearity with a logarithmic factor, which is repulsive for large amplitude waves and attractive for opposite situations. This property of the governing equation supports stable QDs immersed in a gaseous phase of the larger component in particle-imbalanced Bose-gas mixtures. We explore the peculiar properties of QD such as incompressibility and surface tension, which are inherent to liquids. The proposed model of binary BEC loaded in a quasi-1D OL allows us to demonstrate the manifestations of the incompressibility and surface tension of 2D QDs.

Suggested Citation

  • Al-Marzoug, S.M. & Baizakov, B.B. & Bahlouli, H., 2023. "Two-dimensional symbiotic solitons and quantum droplets in a quasi-one-dimensional optical lattice," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
  • Handle: RePEc:eee:chsofr:v:175:y:2023:i:p2:s0960077923009736
    DOI: 10.1016/j.chaos.2023.114072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923009736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Fei-yan & Yan, Zi-teng & Cai, Xiao-yan & Li, Chao-long & Chen, Gui-lian & He, He-xiang & Liu, Bin & Li, Yong-yao, 2021. "Discrete quantum droplets in one-dimensional optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Malomed, B.A., 2022. "Multidimensional dissipative solitons and solitary vortices," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    3. Zhao, Zi-bin & Chen, Gui-hua & Liu, Bin & Li, Yong-yao, 2022. "Discrete vortex quantum droplets," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Liangwei & Fan, Mingjing & Malomed, Boris A., 2024. "Stable higher-order vortex quantum droplets in an annular potential," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    2. Liu, Dongshuai & Gao, Yanxia & Fan, Dianyuan & Zhang, Lifu, 2023. "Higher-charged vortex solitons in harmonic potential," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    3. Kartashov, Yaroslav V. & Zezyulin, Dmitry A., 2024. "Enhanced mobility of quantum droplets in periodic lattices," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. Li, Jun-Jie & Zhang, Hui-Cong, 2023. "Stability and adaptive evolution of higher-order vector vortex solitons in thermally nonlinear media with tunable transverse size," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    5. Kudryashov, Nikolay A. & Kutukov, Aleksandr A. & Biswas, Anjan & Zhou, Qin & Yıldırım, Yakup & Alshomrani, Ali Saleh, 2023. "Optical solitons for the concatenation model: Power-law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    6. Hanqing Zhao & Boris A. Malomed & Ivan I. Smalyukh, 2023. "Topological solitonic macromolecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Wang, Qing & Zhu, Junying & Wang, Jun & Yu, Haiyan & Hu, Beibei, 2024. "Controllable trajectory and shape of Hermite-Gaussian soliton clusters," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    8. Chen, Zhiming & Liu, Xiuye & Xie, Hongqiang & Zeng, Jianhua, 2024. "Three-dimensional Bose–Einstein gap solitons in optical lattices with fractional diffraction," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    9. Mahfoudi, Narimene & Bouguerra, Abdesselam & Triki, Houria & Azzouzi, Faiçal & Biswas, Anjan & Yıldırım, Yakup & Alshomrani, Ali Saleh, 2024. "Chirped self-similar optical solitons with cubic–quintic–septic–nonic form of self-phase modulation," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    10. Xu, Yinshen & Li, Peixin & Mihalache, Dumitru & He, Jingsong, 2023. "Resonant collisions among multi-breathers in the Mel’nikov system," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    11. Jiang, Xunda & Zeng, Yue & Ji, Yikai & Liu, Bin & Qin, Xizhou & Li, Yongyao, 2022. "Vortex formation and quench dynamics of rotating quantum droplets," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    12. Li, Jun-Jie & Zhang, Hui-Cong, 2024. "Interaction-produced vector vortex chaoticons in nonlocal nonlinear media," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    13. Manoj Mishra & Kirti Meena & Divya Yadav & Brajraj Singh & Soumendu Jana, 2023. "The dynamics, stability and modulation instability of Gaussian beams in nonlocal nonlinear media," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(8), pages 1-13, August.
    14. Wang, Qing & Zhou, Liangliang & Zhu, Junying & He, Jun-Rong, 2024. "Multi-vortex beams in nonlinear media with harmonic potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    15. Huang, Hao & Wang, Hongcheng & Chen, Guihua & Chen, Manna & Lim, Chin Seong & Wong, Kok-Cheong, 2023. "Stable quantum droplets with higher-order vortex in radial lattices," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    16. Yakup Yıldırım & Anjan Biswas & Luminita Moraru & Abdulah A. Alghamdi, 2023. "Quiescent Optical Solitons for the Concatenation Model with Nonlinear Chromatic Dispersion," Mathematics, MDPI, vol. 11(7), pages 1-25, April.
    17. Ding, Cui-Cui & Zhou, Qin & Xu, Si-Liu & Sun, Yun-Zhou & Liu, Wen-Jun & Mihalache, Dumitru & Malomed, Boris A., 2023. "Controlled nonautonomous matter–wave solitons in spinor Bose–Einstein condensates with spatiotemporal modulation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    18. Zeng, Liangwei & Belić, Milivoj R. & Mihalache, Dumitru & Zhu, Xing, 2024. "Elliptical and rectangular solitons in media with competing cubic–quintic nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    19. Huang, Hao & Wang, Hongcheng & Chen, Manna & Lim, Chin Seong & Wong, Kok-Cheong, 2022. "Binary-vortex quantum droplets," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    20. Djazet, Alain & Fewo, Serge I. & Djoko, Martin & Felenou, E. Tchomgo & Kofané, Timoléon C., 2023. "Extension of the stability criterion for dissipative vector solitons of a laser coupled two-dimensional Ginzburg–Landau Equation generated from vector asymmetric inputs," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p2:s0960077923009736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.