IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v168y2023ics0960077923000383.html
   My bibliography  Save this article

Stable quantum droplets with higher-order vortex in radial lattices

Author

Listed:
  • Huang, Hao
  • Wang, Hongcheng
  • Chen, Guihua
  • Chen, Manna
  • Lim, Chin Seong
  • Wong, Kok-Cheong

Abstract

The existence and stability of quantum droplets are studied in ultracold atoms in Bose–Einstein condensates with a radial period lattice under the Lee–Huang–Yang correction. Both stable bell-shaped and ring-shaped zero-vorticity quantum droplets are found in this radial lattice. It is found that the existence curves of the zero-vorticity quantum droplets could violate the V–K criterion, which is a necessary condition to form stable solitons. Under the effect of the radial lattice potential, vortex quantum droplets can be still stable when embedded vorticity S is up to S=10. The vortex quantum droplets can be trapped at the first as well as at the second circular trough of the radial lattice. The stability areas of the vortex quantum droplets with different embedded vorticity S are identified by the long time evolution. The chemical potential of the vortex quantum droplets also violates the V–K criterion. The peak value and effective area of the vortex quantum droplets are independent of the vorticity S, while it only depends on the total norm and the potential of the radial lattice. The double ring quantum droplets, with different embedded vorticity in their inner and outer ring, are also discussed.

Suggested Citation

  • Huang, Hao & Wang, Hongcheng & Chen, Guihua & Chen, Manna & Lim, Chin Seong & Wong, Kok-Cheong, 2023. "Stable quantum droplets with higher-order vortex in radial lattices," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000383
    DOI: 10.1016/j.chaos.2023.113137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923000383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Xunda & Zeng, Yue & Ji, Yikai & Liu, Bin & Qin, Xizhou & Li, Yongyao, 2022. "Vortex formation and quench dynamics of rotating quantum droplets," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Zhao, Fei-yan & Yan, Zi-teng & Cai, Xiao-yan & Li, Chao-long & Chen, Gui-lian & He, He-xiang & Liu, Bin & Li, Yong-yao, 2021. "Discrete quantum droplets in one-dimensional optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Lauriane Chomaz & Laura Corman & Tom Bienaimé & Rémi Desbuquois & Christof Weitenberg & Sylvain Nascimbène & Jérôme Beugnon & Jean Dalibard, 2015. "Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas," Nature Communications, Nature, vol. 6(1), pages 1-10, May.
    4. Huang, Hao & Wang, Hongcheng & Chen, Manna & Lim, Chin Seong & Wong, Kok-Cheong, 2022. "Binary-vortex quantum droplets," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    5. Zhou, Zheng & Shi, Yimin & Tang, Shiqing & Deng, Haiming & Wang, Haibin & He, Xiongying & Zhong, Honghua, 2021. "Controllable dissipative quantum droplets in one-dimensional optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Liangwei & Fan, Mingjing & Malomed, Boris A., 2024. "Stable higher-order vortex quantum droplets in an annular potential," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    2. Liu, Dongshuai & Gao, Yanxia & Fan, Dianyuan & Zhang, Lifu, 2023. "Higher-charged vortex solitons in harmonic potential," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    3. Li, Jun-Jie & Zhang, Hui-Cong, 2023. "Stability and adaptive evolution of higher-order vector vortex solitons in thermally nonlinear media with tunable transverse size," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    4. Kartashov, Yaroslav V. & Zezyulin, Dmitry A., 2024. "Enhanced mobility of quantum droplets in periodic lattices," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Liangwei & Fan, Mingjing & Malomed, Boris A., 2024. "Stable higher-order vortex quantum droplets in an annular potential," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    2. Zhao, Zi-bin & Chen, Gui-hua & Liu, Bin & Li, Yong-yao, 2022. "Discrete vortex quantum droplets," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Huang, Hao & Wang, Hongcheng & Chen, Manna & Lim, Chin Seong & Wong, Kok-Cheong, 2022. "Binary-vortex quantum droplets," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Li, Jun-Jie & Zhang, Hui-Cong, 2023. "Stability and adaptive evolution of higher-order vector vortex solitons in thermally nonlinear media with tunable transverse size," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    5. Zhao, Fei-yan & Yan, Zi-teng & Cai, Xiao-yan & Li, Chao-long & Chen, Gui-lian & He, He-xiang & Liu, Bin & Li, Yong-yao, 2021. "Discrete quantum droplets in one-dimensional optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Liu, Dongshuai & Gao, Yanxia & Fan, Dianyuan & Zhang, Lifu, 2023. "Higher-charged vortex solitons in harmonic potential," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    7. Jiang, Xunda & Zeng, Yue & Ji, Yikai & Liu, Bin & Qin, Xizhou & Li, Yongyao, 2022. "Vortex formation and quench dynamics of rotating quantum droplets," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    8. Al-Marzoug, S.M. & Baizakov, B.B. & Bahlouli, H., 2023. "Two-dimensional symbiotic solitons and quantum droplets in a quasi-one-dimensional optical lattice," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    9. Kartashov, Yaroslav V. & Zezyulin, Dmitry A., 2024. "Enhanced mobility of quantum droplets in periodic lattices," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.