IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v161y2022ics0960077922004933.html
   My bibliography  Save this article

Linear and rotational fractal design for multiwing hyperchaotic systems with triangle and square shapes

Author

Listed:
  • Doungmo Goufo, Emile F.

Abstract

Since the German biochemist Otto Rössler proposed the first hyperchaotic model in the years 1970s and showed to the scientific community how important hyperchaos can be in describing real life phenomena, it has become necessary to develop and propose various techniques capable of generating hyperchaotic attractors with more complex dynamics applicable in both theory and practice. We propose in this paper, an innovative method with analytical and numerical aspects able to generate a class of hyperchaotic attractors with many wings and different shapes. We use a fractal operator to obtain an expression of the modified fractal-fractional Lü system, which is therefore solved numerically. After showing that the initial model is hyperchaotic, we perform some numerical simulations that prove that the hyperchaotic status of the system remain unchanged. The results show that the modified system can generate hyperchaotic attractors of types n-wings, n × m-wings, n × m × p-wings and n × m × p × r-wings (m, n, p, r ∈ ℕ), using both linear and rotational variations. It appears that the system is involved in fractal designs comprising a linear or rotational self-duplication process happening in different scales across the system and ending up with the triangular or square shape.

Suggested Citation

  • Doungmo Goufo, Emile F., 2022. "Linear and rotational fractal design for multiwing hyperchaotic systems with triangle and square shapes," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922004933
    DOI: 10.1016/j.chaos.2022.112283
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922004933
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112283?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naik, Parvaiz Ahmad & Owolabi, Kolade M. & Yavuz, Mehmet & Zu, Jian, 2020. "Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Chen, Aimin & Lu, Junan & Lü, Jinhu & Yu, Simin, 2006. "Generating hyperchaotic Lü attractor via state feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 103-110.
    3. Chen, Zengqiang & Yang, Yong & Yuan, Zhuzhi, 2008. "A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1187-1196.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Qiang & Norouzi, Benyamin & Liu, Feng, 2018. "Dynamic analysis, circuit realization, control design and image encryption application of an extended Lü system with coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 230-245.
    2. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Tchitnga, R. & Mezatio, B.A. & Fozin, T. Fonzin & Kengne, R. & Louodop Fotso, P.H. & Fomethe, A., 2019. "A novel hyperchaotic three-component oscillator operating at high frequency," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 166-180.
    4. Yassen, M.T., 2008. "Synchronization hyperchaos of hyperchaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 465-475.
    5. Singh, Jay Prakash & Roy, Binoy Krishna, 2018. "Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 81-91.
    6. Zhou, Xiaobing & Wu, Yue & Li, Yi & Xue, Hongquan, 2009. "Adaptive control and synchronization of a new modified hyperchaotic Lü system with uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2477-2483.
    7. Yu Feng & Zhouchao Wei & Uğur Erkin Kocamaz & Akif Akgül & Irene Moroz, 2017. "Synchronization and Electronic Circuit Application of Hidden Hyperchaos in a Four-Dimensional Self-Exciting Homopolar Disc Dynamo without Equilibria," Complexity, Hindawi, vol. 2017, pages 1-11, May.
    8. He, Hua & Wang, Wendi, 2024. "Asymptotically periodic solutions of fractional order systems with applications to population models," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    9. Özköse, Fatma & Yavuz, Mehmet & Şenel, M. Tamer & Habbireeh, Rafla, 2022. "Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    10. Saifullah, Sayed & Ali, Amir & Franc Doungmo Goufo, Emile, 2021. "Investigation of complex behaviour of fractal fractional chaotic attractor with mittag-leffler Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Jahanshahi, Hadi & Yousefpour, Amin & Wei, Zhouchao & Alcaraz, Raúl & Bekiros, Stelios, 2019. "A financial hyperchaotic system with coexisting attractors: Dynamic investigation, entropy analysis, control and synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 66-77.
    12. Yang, Zhen & Liu, Yinzhe & Wu, Yuqi & Qi, Yunliang & Ren, Fengyuan & Li, Shouliang, 2023. "A high speed pseudo-random bit generator driven by 2D-discrete hyperchaos," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    13. Wang, Zhen & Ahmadi, Atefeh & Tian, Huaigu & Jafari, Sajad & Chen, Guanrong, 2023. "Lower-dimensional simple chaotic systems with spectacular features," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    14. Mangal, Shiv & Misra, O.P. & Dhar, Joydip, 2023. "Fractional-order deterministic epidemic model for the spread and control of HIV/AIDS with special reference to Mexico and India," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 82-102.
    15. Samad Noeiaghdam & Sanda Micula, 2021. "Dynamical Strategy to Control the Accuracy of the Nonlinear Bio-Mathematical Model of Malaria Infection," Mathematics, MDPI, vol. 9(9), pages 1-24, May.
    16. Xie, Qian & Si, Gangquan & Zhang, Yanbin & Yuan, Yiwei & Yao, Rui, 2016. "Finite-time synchronization and identification of complex delayed networks with Markovian jumping parameters and stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 86(C), pages 35-49.
    17. Ojoniyi, Olurotimi S. & Njah, Abdulahi N., 2016. "A 5D hyperchaotic Sprott B system with coexisting hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 172-181.
    18. Wang, Jiezhi & Chen, Zengqiang & Yuan, Zhuzhi, 2009. "Existence of a new three-dimensional chaotic attractor," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3053-3057.
    19. Zhang, Zefeng & Huang, Lilian & Liu, Jin & Guo, Qiang & Du, Xiuli, 2022. "A new method of constructing cyclic symmetric conservative chaotic systems and improved offset boosting control," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    20. Signing, V.R. Folifack & Kengne, J. & Kana, L.K., 2018. "Dynamic analysis and multistability of a novel four-wing chaotic system with smooth piecewise quadratic nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 263-274.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922004933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.