IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v160y2022ics0960077922004702.html
   My bibliography  Save this article

Echo effect in brain networks

Author

Listed:
  • Shen, Qiwei
  • Liu, Zonghua

Abstract

Echo behavior has been found in many systems and takes roles in different aspects. By checking the time series of terminating processes of dynamics events, we find that echo behavior may also exist in brain networks but its mechanism remains unclear. We here study the echo effect on real brain networks by presenting a new framework, which replaces the two perturbations in previous studies by only one perturbation and is thus convenient for theoretical analysis. We interestingly find that echo effect depends on both the phase-resetting parameter and coupling strength, and there is an optimal area of echo effect in phase diagram where the optimal phase-resetting parameter and weak coupling strength are the two necessary conditions. We further reveal that echo comes from a new mechanism of perturbation selected correlation, i.e. a reverse deduced correlation, which explains a more fundamental aspect of echo. Moreover, a theoretical analysis is provided to explain the echo effect, based on the uncoupled brain network. These findings uncover the underlying mechanism why the echoes in brain networks can only happen during the terminating processes, i.e. the condition of optimal phase-resetting or the needed perturbations is provided right before the terminating process while the condition of weak coupling is provided by the terminating process.

Suggested Citation

  • Shen, Qiwei & Liu, Zonghua, 2022. "Echo effect in brain networks," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
  • Handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922004702
    DOI: 10.1016/j.chaos.2022.112260
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922004702
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xinjia & Tian, Changhai & Zhang, Xiyun & Zheng, Muhua & Xu, Kesheng, 2022. "Short-term plasticity as a mechanism to regulate and retain multistability," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    2. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    4. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    5. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    6. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    7. Daniel Reisinger & Fabian Tschofenig & Raven Adam & Marie Lisa Kogler & Manfred Füllsack & Fabian Veider & Georg Jäger, 2024. "Patterns of stability in complex contagions," Journal of Computational Social Science, Springer, vol. 7(2), pages 1895-1911, October.
    8. Gregory Gutin & Tomohiro Hirano & Sung-Ha Hwang & Philip R. Neary & Alexis Akira Toda, 2021. "The effect of social distancing on the reach of an epidemic in social networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(3), pages 629-647, July.
    9. Jie, Ke-Wei & Liu, San-Yang & Sun, Xiao-Jun & Xu, Yun-Cheng, 2023. "A dynamic ripple-spreading algorithm for solving mean–variance of shortest path model in uncertain random networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    10. Yu Gong & Xiaojiang Xu & Changping Zhao & Tobias Schoenherr, 2024. "Multi-Tier Supply Chain Learning Networks: A Simulation Study Based on the Experience-Weighted Attraction (EWA) Model," Sustainability, MDPI, vol. 16(10), pages 1-25, May.
    11. Divakaruni, Anantha & Zimmerman, Peter, 2023. "The Lightning Network: Turning Bitcoin into money," Finance Research Letters, Elsevier, vol. 52(C).
    12. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Chen, Feng & Wu, Bin & Lou, Wen-qian & Zhu, Bo-wen, 2024. "Impact of dual-credit policy on diffusion of technology R & D among automakers: Based on an evolutionary game model with technology-spillover in complex network," Energy, Elsevier, vol. 303(C).
    14. Abderrahim Zannou & Abdelhak Boulaalam & El Habib Nfaoui, 2020. "SIoT: A New Strategy to Improve the Network Lifetime with an Efficient Search Process," Future Internet, MDPI, vol. 13(1), pages 1-23, December.
    15. Jingsha He & Yue Li & Nafei Zhu, 2023. "A Game Theory-Based Model for the Dissemination of Privacy Information in Online Social Networks," Future Internet, MDPI, vol. 15(3), pages 1-17, February.
    16. Jianning Su & Julian Allagan & Shanzhen Gao & Olumide Malomo & Weizheng Gao & Ephrem Eyob, 2024. "Dominion on Grids," Mathematics, MDPI, vol. 12(21), pages 1-13, October.
    17. Qian, Qian & Feng, Hairong & Gu, Jing, 2021. "The influence of risk attitude on credit risk contagion—Perspective of information dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    18. Fangyuan Tian & Hongxia Li & Shuicheng Tian & Chenning Tian & Jiang Shao, 2022. "Is There a Difference in Brain Functional Connectivity between Chinese Coal Mine Workers Who Have Engaged in Unsafe Behavior and Those Who Have Not?," IJERPH, MDPI, vol. 19(1), pages 1-21, January.
    19. Zhenpeng Li & Zhihua Yan & Xijin Tang, 2024. "Evolutionary Model of Signed Edges in Online Networks Based on Infinite One-Dimensional Uniform Lattice," Mathematics, MDPI, vol. 12(7), pages 1-9, March.
    20. Yelai Feng & Huaixi Wang & Chao Chang & Hongyi Lu, 2022. "Intrinsic Correlation with Betweenness Centrality and Distribution of Shortest Paths," Mathematics, MDPI, vol. 10(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922004702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.