IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v159y2022ics0960077922003447.html
   My bibliography  Save this article

Robust stabilization and synchronization in a network of chaotic systems with time-varying delays

Author

Listed:
  • Serrano, Fernando E.
  • Ghosh, Dibakar

Abstract

In this paper, a novel controller technique is derived for the network synchronization of chaotic systems with time-varying delay. The stabilization of the complex chaotic systems is achieved by considering an appropriate Krasovskii-Lyapunov functional in order to find the asynchronous robust stabilization law and fast switching topology. In a similar way, the asynchronous technique is based on an appropriate switching topology in order to synchronize the chaotic systems. The time-varying delays occur in different systems which increase the complexity of the synchronization. So for this reason, an asynchronous controller is designed by considering the time-varying delays in order to avoid instability or deteriorate performance of the whole chaotic systems. The remarkable finding of this study is that the robust controller considers the uncertainties on each complex chaotic systems node until an exact synchronization is achieved while switching the action of the controller synchronization and the chaotic node dynamics of the studied complex systems. Finally, numerical examples are considered on chaotic Rössler systems to test and validate the obtained theoretical results.

Suggested Citation

  • Serrano, Fernando E. & Ghosh, Dibakar, 2022. "Robust stabilization and synchronization in a network of chaotic systems with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922003447
    DOI: 10.1016/j.chaos.2022.112134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922003447
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soriano-Sánchez, A.G. & Posadas-Castillo, C. & Platas-Garza, M.A. & Cruz-Hernández, C. & López-Gutiérrez, R.M., 2016. "Coupling strength computation for chaotic synchronization of complex networks with multi-scroll attractors," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 305-316.
    2. Ruiz-Silva, A. & Gilardi-Velázquez, H.E. & Campos, Eric, 2021. "Emergence of synchronous behavior in a network with chaotic multistable systems," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Ghosh, Dibakar & Chowdhury, A. Roy & Saha, Papri, 2008. "Multiple delay Rössler system—Bifurcation and chaos control," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 472-485.
    4. Ghrab, Sonia & Benamor, Anouar & Messaoud, Hassani, 2021. "A new robust discrete-time sliding mode control design for systems with time-varying delays on state and input and unknown unmatched parameter uncertainties," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 921-945.
    5. Darui Zhu & Ling Liu & Chongxin Liu, 2014. "Adaptive Pinning Synchronization Control of the Fractional-Order Chaos Nodes in Complex Networks," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-7, May.
    6. Shi, Lin & Zhang, Chunmei & Zhong, Shouming, 2021. "Synchronization of singular complex networks with time-varying delay via pinning control and linear feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    7. Yang, Qing-Lin & Wang, Li-Fu & Zhao, Guo-Tao & Guo, Ge, 2020. "A coarse graining algorithm based on m-order degree in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    8. Luo, Yiping & Yao, Yuejie & Cheng, Zifeng & Xiao, Xing & Liu, Hanyu, 2021. "Event-triggered control for coupled reaction–diffusion complex network systems with finite-time synchronization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zhichao & Zheng, Changjiang & Tao, Tongtong & Wang, Yanyan, 2024. "Reliability analysis of urban road traffic network under targeted attack strategies considering traffic congestion diffusion," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Gao, Zilin & Guo, Changyuan & Li, Yongfu & Liu, Lizhi & Luo, Weimin, 2023. "Stabilization of a structurally balanced complex network with similar nodes of different dimensions," Applied Mathematics and Computation, Elsevier, vol. 458(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz-Silva, A. & Gilardi-Velázquez, H.E. & Campos, Eric, 2021. "Emergence of synchronous behavior in a network with chaotic multistable systems," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Jiang, Tingting & Zhang, Yuping & Zeng, Yong & Zhong, Shouming & Shi, Kaibo & Cai, Xiao, 2021. "Finite-time analysis for networked predictive control systems with induced time delays and data packet dropouts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    3. Yifan Zhang & Tianzeng Li & Zhiming Zhang & Yu Wang, 2022. "Novel Methods for the Global Synchronization of the Complex Dynamical Networks with Fractional-Order Chaotic Nodes," Mathematics, MDPI, vol. 10(11), pages 1-22, June.
    4. Garza-González, E. & Posadas-Castillo, C. & López-Mancilla, D. & Soriano-Sánchez, A.G., 2020. "Increasing synchronizability in a scale-free network via edge elimination," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 233-243.
    5. Hongkun Ma & Chengdong Yang, 2022. "Exponential Synchronization of Hyperbolic Complex Spatio-Temporal Networks with Multi-Weights," Mathematics, MDPI, vol. 10(14), pages 1-11, July.
    6. Ahmed A. Abd El-Latif & Janarthanan Ramadoss & Bassem Abd-El-Atty & Hany S. Khalifa & Fahimeh Nazarimehr, 2022. "A Novel Chaos-Based Cryptography Algorithm and Its Performance Analysis," Mathematics, MDPI, vol. 10(14), pages 1-22, July.
    7. Zandi-Mehran, Nazanin & Jafari, Sajad & Golpayegani, Seyed Mohammad Reza Hashemi, 2020. "Signal separation in an aggregation of chaotic signals," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    8. Sánchez, Allan G.S. & Posadas–Castillo, C. & Garza–González, E., 2021. "Determining efficiency of small-world algorithms: A comparative approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 687-699.
    9. Yang, Jihua & Zhao, Liqin, 2015. "Bifurcation analysis and chaos control of the modified Chua’s circuit system," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 332-339.
    10. Zhou, Lili & Zhang, Yuhao & Tan, Fei & Huang, Mingzhe, 2023. "Adaptive secure synchronization of complex networks under mixed attacks via time-controllable technology," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    11. Zhang, Lan & Yang, Xinsong & Xu, Chen & Feng, Jianwen, 2017. "Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control," Applied Mathematics and Computation, Elsevier, vol. 306(C), pages 22-30.
    12. Fan, Gaofeng & Ma, Yuechao, 2023. "Fault-tolerant fixed/preassigned-time synchronization control of uncertain singularly perturbed complex networks with time-varying delay and stochastic disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    13. Bao, Han & Ding, Ruoyu & Chen, Bei & Xu, Quan & Bao, Bocheng, 2023. "Two-dimensional non-autonomous neuron model with parameter-controlled multi-scroll chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    14. A.G., Soriano–Sánchez & C., Posadas–Castillo & M.A., Platas–Garza & A., Arellano–Delgado, 2018. "Synchronization and FPGA realization of complex networks with fractional–order Liu chaotic oscillators," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 250-262.
    15. Ning, Di & Chen, Juan & Jiang, Meiying, 2022. "Pinning impulsive synchronization of two-layer heterogeneous delayed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    16. Sun, Bo & Cao, Yuting & Guo, Zhenyuan & Yan, Zheng & Wen, Shiping, 2020. "Synchronization of discrete-time recurrent neural networks with time-varying delays via quantized sliding mode control," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    17. Cui, Xueke & Li, Hong-Li & Zhang, Long & Hu, Cheng & Bao, Haibo, 2023. "Complete synchronization for discrete-time fractional-order coupled neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    18. Poria, Swarup & Poria, Anindita Tarai & Chatterjee, Prasanta, 2009. "Synchronization threshold of a coupled n-dimensional time-delay system," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1123-1124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922003447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.