IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v558y2020ics0378437120304556.html
   My bibliography  Save this article

A coarse graining algorithm based on m-order degree in complex network

Author

Listed:
  • Yang, Qing-Lin
  • Wang, Li-Fu
  • Zhao, Guo-Tao
  • Guo, Ge

Abstract

The coarse-grained technology of complex networks is a promising method to analyze large-scale networks. Coarse-grained networks are required to preserve some properties of the original networks. In this paper, we propose an m-order-degree-based coarse graining (MDCG) algorithm to keep some statistical properties and controllability of the original network by merging the nodes with the same or similar m-order degree. Compared with the previous coarse-grained algorithms, the proposed algorithm uses the m-order degree as the classification criterion, which not only requires less network information and smaller computation but also preserves more properties, especially to maintain controllability of the original network. Moreover, the proposed algorithm can control the size of the coarse-grained networks freely. The effectiveness of the proposed method is demonstrated by simulation analysis of some model networks and real networks.

Suggested Citation

  • Yang, Qing-Lin & Wang, Li-Fu & Zhao, Guo-Tao & Guo, Ge, 2020. "A coarse graining algorithm based on m-order degree in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
  • Handle: RePEc:eee:phsmap:v:558:y:2020:i:c:s0378437120304556
    DOI: 10.1016/j.physa.2020.124879
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120304556
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Pei & Xu, Shuang, 2017. "Spectral coarse grained controllability of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 168-176.
    2. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    3. Zhengzhong Yuan & Chen Zhao & Zengru Di & Wen-Xu Wang & Ying-Cheng Lai, 2013. "Exact controllability of complex networks," Nature Communications, Nature, vol. 4(1), pages 1-9, December.
    4. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    5. Long, Yong-Shang & Jia, Zhen & Wang, Ying-Ying, 2018. "Coarse graining method based on generalized degree in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 655-665.
    6. Hu, Sen & Yang, Hualei & Cai, Boliang & Yang, Chunxia, 2013. "Research on spatial economic structure for different economic sectors from a perspective of a complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3682-3697.
    7. Xu, Xiao-Ting & Wang, Nianxin & Bian, Jun & Zhou, Bin, 2019. "Understanding the diversity on power-law-like degree distribution in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 576-581.
    8. C.-L. Tang & W.-X. Wang & X. Wu & B.-H. Wang, 2006. "Effects of average degree on cooperation in networked evolutionary game," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 53(3), pages 411-415, October.
    9. Wang, Minggang & Tian, Lixin, 2016. "From time series to complex networks: The phase space coarse graining," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 456-468.
    10. Deng, Yang & Jia, Zhen & Deng, Guangming & Zhang, Qiongfen, 2020. "Eigenvalue spectrum and synchronizability of multiplex chain networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    11. Sun, Xiaoqi & An, Haizhong & Liu, Xiaojia, 2018. "Network analysis of Chinese provincial economies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1168-1180.
    12. Zhou, Bin & Xu, Xiao-Ting & Liu, Jian-Guo & Xu, Xiao-Ke & Wang, Nianxin, 2019. "Information interaction model for the mobile communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1170-1176.
    13. Zhang, Hui & Zhuge, Chengxiang & Yu, Xiaohua, 2018. "Identifying hub stations and important lines of bus networks: A case study in Xiamen, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 394-402.
    14. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    15. Feng, Xiangnan & Wei, Wei & Zhang, Renquan & Wang, Jiannan & Shi, Ying & Zheng, Zhiming, 2019. "Exploring the heterogeneity for node importance byvon Neumann entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 53-65.
    16. Wang, Yang & Hu, Yanqing & Di, Zengru & Fan, Ying, 2011. "The effect of hub nodes on the community structure in scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 4027-4033.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Serrano, Fernando E. & Ghosh, Dibakar, 2022. "Robust stabilization and synchronization in a network of chaotic systems with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    2. Long, Yong-Shang & Jia, Zhen & Wang, Ying-Ying, 2018. "Coarse graining method based on generalized degree in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 655-665.
    3. Ding, Jie & Wen, Changyun & Li, Guoqi, 2017. "Key node selection in minimum-cost control of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 251-261.
    4. Li, Meizhu & Zhang, Qi & Deng, Yong, 2018. "Evidential identification of influential nodes in network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 283-296.
    5. Li, Xin-Feng & Lu, Zhe-Ming, 2016. "Optimizing the controllability of arbitrary networks with genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 422-433.
    6. Sun, Peng Gang & Ma, Xiaoke & Chi, Juan, 2017. "Dominating complex networks by identifying minimum skeletons," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 182-191.
    7. Guo, Tianjiao & Tu, Lilan & Guo, Yifei & Hu, Jia & Su, Qingqing, 2023. "Control-capacity analysis and optimized construction for controlled interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    8. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    9. Yao, Jialing & Sun, Bingbin & Xi, lifeng, 2019. "Fractality of evolving self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 211-216.
    10. Tao Jia & Robert F Spivey & Boleslaw Szymanski & Gyorgy Korniss, 2015. "An Analysis of the Matching Hypothesis in Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-12, June.
    11. Zhang, Rui & Wang, Xiaomeng & Cheng, Ming & Jia, Tao, 2019. "The evolution of network controllability in growing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 257-266.
    12. Christos Ellinas & Neil Allan & Anders Johansson, 2016. "Exploring Structural Patterns Across Evolved and Designed Systems: A Network Perspective," Systems Engineering, John Wiley & Sons, vol. 19(3), pages 179-192, May.
    13. Hiroyasu Inoue, 2015. "Analyses of Aggregate Fluctuations of Firm Network Based on the Self-Organized Criticality Model," Papers 1512.05066, arXiv.org, revised Apr 2016.
    14. Xian Xi & Xiangyun Gao & Xiaotian Sun & Huiling Zheng & Congcong Wu, 2024. "Dynamic analysis and application of network structure control in risk conduction in the industrial chain," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    15. Noah J Cowan & Erick J Chastain & Daril A Vilhena & James S Freudenberg & Carl T Bergstrom, 2012. "Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-5, June.
    16. Hu, Ying & Yu, Yang & Mardani, Abbas, 2021. "Selection of carbon emissions control industries in China: An approach based on complex networks control perspective," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    17. Li, Xiang & Li, Guoqi & Gao, Leitao & Li, Beibei & Xiao, Gaoxi, 2024. "Sufficient control of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    18. Li, Sheng & Liu, Wenwen & Wu, Ruizi & Li, Junli, 2023. "An adaptive attack model to network controllability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    19. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Shi, Congling, 2016. "Connectivity reliability and topological controllability of infrastructure networks: A comparative assessment," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 24-33.
    20. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Berryhill, Benjamin & Yazdani, Alireza, 2016. "Characterizing the topological and controllability features of U.S. power transmission networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 84-98.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:558:y:2020:i:c:s0378437120304556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.