IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i3p1123-1124.html
   My bibliography  Save this article

Synchronization threshold of a coupled n-dimensional time-delay system

Author

Listed:
  • Poria, Swarup
  • Poria, Anindita Tarai
  • Chatterjee, Prasanta

Abstract

The synchronization threshold in the general form of one way time-delay system is discussed. The synchronization threshold of coupled time-delay chaotic systems can be estimated by two different analytical approaches. One of them is based on the Krasovskii–Lyapunov theory that represents an extension of the second Lyapunov method for delay differential equations. Another approach uses a perturbation theory of large delay time. Based on the Krasovskii–Lyapunov theory, the deduction process and the application range of the synchronization threshold are given.

Suggested Citation

  • Poria, Swarup & Poria, Anindita Tarai & Chatterjee, Prasanta, 2009. "Synchronization threshold of a coupled n-dimensional time-delay system," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1123-1124.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:3:p:1123-1124
    DOI: 10.1016/j.chaos.2008.04.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908002282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.04.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghosh, Dibakar & Chowdhury, A. Roy & Saha, Papri, 2008. "Multiple delay Rössler system—Bifurcation and chaos control," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 472-485.
    2. Sun, Chengjun & Lin, Yiping & Han, Maoan, 2006. "Stability and Hopf bifurcation for an epidemic disease model with delay," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 204-216.
    3. Zhao, Jiantao & Wei, Junjie, 2009. "Stability and bifurcation in a two harmful phytoplankton–zooplankton system," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1395-1409.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Zhichao & Zhang, Tongqian, 2017. "Dynamical analysis of a reaction-diffusion phytoplankton-zooplankton system with delay," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 693-704.
    2. Shi, Renxiang & Yu, Jiang, 2017. "Hopf bifurcation analysis of two zooplankton-phytoplankton model with two delays," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 62-73.
    3. Thakur, Nilesh Kumar & Ojha, Archana & Tiwari, Pankaj Kumar & Upadhyay, Ranjit Kumar, 2021. "An investigation of delay induced stability transition in nutrient-plankton systems," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Tipsri, S. & Chinviriyasit, W., 2015. "The effect of time delay on the dynamics of an SEIR model with nonlinear incidence," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 153-172.
    5. Raw, Sharada Nandan & Sahu, Sevak Ram, 2023. "Strong stability with impact of maturation delay and diffusion on a toxin producing phytoplankton–zooplankton model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 547-570.
    6. Li, Xue-Zhi & Li, Wen-Sheng & Ghosh, Mini, 2009. "Stability and bifurcation of an SIS epidemic model with treatment," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2822-2832.
    7. Ahmed A. Abd El-Latif & Janarthanan Ramadoss & Bassem Abd-El-Atty & Hany S. Khalifa & Fahimeh Nazarimehr, 2022. "A Novel Chaos-Based Cryptography Algorithm and Its Performance Analysis," Mathematics, MDPI, vol. 10(14), pages 1-22, July.
    8. Serrano, Fernando E. & Ghosh, Dibakar, 2022. "Robust stabilization and synchronization in a network of chaotic systems with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    9. Zandi-Mehran, Nazanin & Jafari, Sajad & Golpayegani, Seyed Mohammad Reza Hashemi, 2020. "Signal separation in an aggregation of chaotic signals," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    10. Jiang, Zhichao & Wei, Junjie, 2008. "Stability and bifurcation analysis in a delayed SIR model," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 609-619.
    11. Jingyi Zhao & Chunhai Gao & Tao Tang, 2022. "A Review of Sustainable Maintenance Strategies for Single Component and Multicomponent Equipment," Sustainability, MDPI, vol. 14(5), pages 1-22, March.
    12. Gan, Qintao & Xu, Rui & Yang, Pinghua, 2009. "Bifurcation and chaos in a ratio-dependent predator–prey system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1883-1895.
    13. Yang, Jihua & Zhao, Liqin, 2015. "Bifurcation analysis and chaos control of the modified Chua’s circuit system," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 332-339.
    14. Zhang, Xue & Zhang, Qing-ling & Zhang, Yue, 2009. "Bifurcations of a class of singular biological economic models," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1309-1318.
    15. Li, Kai & Wei, Junjie, 2009. "Stability and Hopf bifurcation analysis of a prey–predator system with two delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2606-2613.
    16. Liu, Junli & Zhang, Tailei, 2009. "Bifurcation analysis of an SIS epidemic model with nonlinear birth rate," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1091-1099.
    17. Hu, Guang-Ping & Li, Xiao-Ling, 2012. "Stability and Hopf bifurcation for a delayed predator–prey model with disease in the prey," Chaos, Solitons & Fractals, Elsevier, vol. 45(3), pages 229-237.
    18. Agnihotri, Kulbhushan & Kaur, Harpreet, 2019. "The dynamics of viral infection in toxin producing phytoplankton and zooplankton system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 122-133.
    19. Zhao, Huitao & Lin, Yiping, 2009. "Hopf bifurcation in a partial dependent predator–prey system with delay," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 896-900.
    20. Nasir, Hanis, 2022. "On the dynamics of a diabetic population model with two delays and a general recovery rate of complications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 571-602.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:3:p:1123-1124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.