IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v145y2021ics0960077921001570.html
   My bibliography  Save this article

Synchronization of singular complex networks with time-varying delay via pinning control and linear feedback control

Author

Listed:
  • Shi, Lin
  • Zhang, Chunmei
  • Zhong, Shouming

Abstract

In this paper, the problem on synchronization is investigated for singular complex networks with time-varying delay via pinning control and linear feedback control. Together with some Lyapunov–Krasovskii functions and effective mathematical techniques, the variation interval of the time delay is divided into several subintervals, several conditions are derived to guarantee a class of singular complex networks with time-varying delay to be synchronized. Finally, examples are given to illustrate the effectiveness of the proposed methods.

Suggested Citation

  • Shi, Lin & Zhang, Chunmei & Zhong, Shouming, 2021. "Synchronization of singular complex networks with time-varying delay via pinning control and linear feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001570
    DOI: 10.1016/j.chaos.2021.110805
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921001570
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiao Fan & Chen, Guanrong, 2002. "Pinning control of scale-free dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 310(3), pages 521-531.
    2. M. E. J. Newman & D. J. Watts, 1999. "Renormalization Group Analysis of the Small-World Network Model," Working Papers 99-04-029, Santa Fe Institute.
    3. Fang, Qingxiang, 2014. "RETRACTED: Synchronization and state feedback control of linearly coupled singular systems," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 381-390.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifan Zhang & Tianzeng Li & Zhiming Zhang & Yu Wang, 2022. "Novel Methods for the Global Synchronization of the Complex Dynamical Networks with Fractional-Order Chaotic Nodes," Mathematics, MDPI, vol. 10(11), pages 1-22, June.
    2. Fan, Gaofeng & Ma, Yuechao, 2023. "Fault-tolerant fixed/preassigned-time synchronization control of uncertain singularly perturbed complex networks with time-varying delay and stochastic disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Zhou, Lili & Zhang, Yuhao & Tan, Fei & Huang, Mingzhe, 2023. "Adaptive secure synchronization of complex networks under mixed attacks via time-controllable technology," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Cui, Xueke & Li, Hong-Li & Zhang, Long & Hu, Cheng & Bao, Haibo, 2023. "Complete synchronization for discrete-time fractional-order coupled neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Ning, Di & Chen, Juan & Jiang, Meiying, 2022. "Pinning impulsive synchronization of two-layer heterogeneous delayed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    6. Serrano, Fernando E. & Ghosh, Dibakar, 2022. "Robust stabilization and synchronization in a network of chaotic systems with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenle Zhang & Jianchang Liu, 2016. "Ultra-fast consensus of discrete-time multi-agent systems with multi-step predictive output feedback," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(6), pages 1465-1479, April.
    2. Marcus Berliant & Axel H. Watanabe, 2018. "A scale‐free transportation network explains the city‐size distribution," Quantitative Economics, Econometric Society, vol. 9(3), pages 1419-1451, November.
    3. Yin, Chun & Zhong, Shou-ming & Huang, Xuegang & Cheng, Yuhua, 2015. "Robust stability analysis of fractional-order uncertain singular nonlinear system with external disturbance," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 351-362.
    4. An, Sufang & Gao, Xiangyun & An, Haizhong & Liu, Siyao & Sun, Qingru & Jia, Nanfei, 2020. "Dynamic volatility spillovers among bulk mineral commodities: A network method," Resources Policy, Elsevier, vol. 66(C).
    5. Miao, Qingying & Rong, Zhihai & Tang, Yang & Fang, Jianan, 2008. "Effects of degree correlation on the controllability of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6225-6230.
    6. Xiangyun Gao & Haizhong An & Weiqiong Zhong, 2013. "Features of the Correlation Structure of Price Indices," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-9, April.
    7. Yunlong Wu & Qian Zhao & Hui Li, 2018. "Synchronization of directed complex networks with uncertainty and time-delay," International Journal of Distributed Sensor Networks, , vol. 14(5), pages 15501477187, May.
    8. Chung-Yuan Huang & Chuen-Tsai Sun & Hsun-Cheng Lin, 2005. "Influence of Local Information on Social Simulations in Small-World Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-8.
    9. Yi, Chengbo & Feng, Jianwen & Wang, Jingyi & Xu, Chen & Zhao, Yi, 2017. "Synchronization of delayed neural networks with hybrid coupling via partial mixed pinning impulsive control," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 78-90.
    10. Yu, Haitao & Guo, Xinmeng & Wang, Jiang & Deng, Bin & Wei, Xile, 2015. "Vibrational resonance in adaptive small-world neuronal networks with spike-timing-dependent plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 170-179.
    11. Mark Newman, 1999. "Small Worlds: The Structure of Social Networks," Working Papers 99-12-080, Santa Fe Institute.
    12. An, Haizhong & Gao, Xiangyun & Fang, Wei & Ding, Yinghui & Zhong, Weiqiong, 2014. "Research on patterns in the fluctuation of the co-movement between crude oil futures and spot prices: A complex network approach," Applied Energy, Elsevier, vol. 136(C), pages 1067-1075.
    13. Yu, Haitao & Guo, Xinmeng & Wang, Jiang & Deng, Bin & Wei, Xile, 2015. "Spike coherence and synchronization on Newman–Watts small-world neuronal networks modulated by spike-timing-dependent plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 307-317.
    14. Song, Xiao & Shi, Wen & Ma, Yaofei & Yang, Chen, 2015. "Impact of informal networks on opinion dynamics in hierarchically formal organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 916-924.
    15. Gancio, Juan & Rubido, Nicolás, 2022. "Critical parameters of the synchronisation's stability for coupled maps in regular graphs," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    16. Liu, Xinzhi & Zhang, Kexue & Xie, Wei-Chau, 2016. "Stabilization of time-delay neural networks via delayed pinning impulses," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 223-234.
    17. Huang, Chung-Yuan & Tsai, Yu-Shiuan, 2010. "Effects of friend-making resources/costs and remembering on acquaintance networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 604-622.
    18. Liu, Hao & Chen, Xin & Huo, Long & Zhang, Yadong & Niu, Chunming, 2022. "Impact of inter-network assortativity on robustness against cascading failures in cyber–physical power systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    19. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    20. Li, Sheng & Liu, Wenwen & Wu, Ruizi & Li, Junli, 2023. "An adaptive attack model to network controllability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.