IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v562y2021ics0378437120306403.html
   My bibliography  Save this article

Event-triggered control for coupled reaction–diffusion complex network systems with finite-time synchronization

Author

Listed:
  • Luo, Yiping
  • Yao, Yuejie
  • Cheng, Zifeng
  • Xiao, Xing
  • Liu, Hanyu

Abstract

In this paper, a class of coupled nonlinear reaction–diffusion complex network system are investigated with finite-time synchronization based on the event-triggered control. The study aims to develop nonlinear complex network systems with partial differential terms under Dirichlet’s boundary conditions by combining the distributed event-triggered control protocol with the Lyapunov stability theorem, Green formula, matrix inequality, and partial differential equation theory. Several sufficient conditions for the system to achieve finite-time synchronization with or without time delay are obtained. Furthermore, the upper bound of time can be estimated to achieve synchronization. Finally, numerical simulation is used to prove the effectiveness of the theory.

Suggested Citation

  • Luo, Yiping & Yao, Yuejie & Cheng, Zifeng & Xiao, Xing & Liu, Hanyu, 2021. "Event-triggered control for coupled reaction–diffusion complex network systems with finite-time synchronization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
  • Handle: RePEc:eee:phsmap:v:562:y:2021:i:c:s0378437120306403
    DOI: 10.1016/j.physa.2020.125219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120306403
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Aijuan & Liao, Xiaofeng & Dong, Tao, 2018. "Finite-time event-triggered synchronization for reaction–diffusion complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 111-120.
    2. Hu, Aihua & Cao, Jinde & Hu, Manfeng & Guo, Liuxiao, 2015. "Cluster synchronization of complex networks via event-triggered strategy under stochastic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 99-110.
    3. Wu, Kai-Ning & Sun, Han-Xiao & Yang, Baoqing & Lim, Cheng-Chew, 2018. "Finite-time boundary control for delay reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 52-63.
    4. Dong, Tao & Wang, Aijuan & Zhu, Huiyun & Liao, Xiaofeng, 2018. "Event-triggered synchronization for reaction–diffusion complex networks via random sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 454-462.
    5. Zhang, Weiwei & Cao, Jinde & Wu, Ranchao & Chen, Dingyuan & Alsaadi, Fuad E., 2018. "Novel results on projective synchronization of fractional-order neural networks with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 76-83.
    6. Yi-Ping Luo & Li Shu & Bi-Feng Zhou, 2017. "Global Exponential Synchronization of Nonlinearly Coupled Complex Dynamical Networks with Time-Varying Coupling Delays," Complexity, Hindawi, vol. 2017, pages 1-10, August.
    7. R. Saravanakumar & M. Syed Ali & H. R. Karimi, 2017. "Robust control of uncertain stochastic Markovian jump systems with mixed time-varying delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(4), pages 862-872, March.
    8. Zhang, Jianmei & Wu, Jianwei & Bao, Haibo & Cao, Jinde, 2018. "Synchronization analysis of fractional-order three-neuron BAM neural networks with multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 441-450.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Tingting & Zhang, Yuping & Zeng, Yong & Zhong, Shouming & Shi, Kaibo & Cai, Xiao, 2021. "Finite-time analysis for networked predictive control systems with induced time delays and data packet dropouts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Hongkun Ma & Chengdong Yang, 2022. "Exponential Synchronization of Hyperbolic Complex Spatio-Temporal Networks with Multi-Weights," Mathematics, MDPI, vol. 10(14), pages 1-11, July.
    3. Serrano, Fernando E. & Ghosh, Dibakar, 2022. "Robust stabilization and synchronization in a network of chaotic systems with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Xingnan & Bao, Haibo & Cao, Jinde, 2019. "Exponential input-to-state stability of quaternion-valued neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 382-393.
    2. Han, Xin-Xin & Wu, Kai-Ning & Ding, Xiaohua, 2020. "Finite-time stabilization for stochastic reaction-diffusion systems with Markovian switching via boundary control," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    3. Zhen Yang & Zhengqiu Zhang, 2022. "Finite-Time Synchronization Analysis for BAM Neural Networks with Time-Varying Delays by Applying the Maximum-Value Approach with New Inequalities," Mathematics, MDPI, vol. 10(5), pages 1-16, March.
    4. Syed Ali, M. & Narayanan, Govindasamy & Shekher, Vineet & Alsulami, Hamed & Saeed, Tareq, 2020. "Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    5. Wang, Aijuan & Liao, Xiaofeng & Dong, Tao, 2018. "Finite-time event-triggered synchronization for reaction–diffusion complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 111-120.
    6. Du, Feifei & Lu, Jun-Guo, 2021. "New criterion for finite-time synchronization of fractional order memristor-based neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    7. Wang, Yangling & Cao, Jinde & Wang, Haijun & Alsaadi, Fuad E., 2019. "Event-triggered consensus of multi-agent systems with nonlinear dynamics and communication delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 147-157.
    8. Li, Hui & Kao, YongGui & Stamova, Ivanka & Shao, Chuntao, 2021. "Global asymptotic stability and S-asymptotic ω-periodicity of impulsive non-autonomous fractional-order neural networks," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    9. Pahnehkolaei, Seyed Mehdi Abedi & Alfi, Alireza & Machado, J.A. Tenreiro, 2019. "Delay independent robust stability analysis of delayed fractional quaternion-valued leaky integrator echo state neural networks with QUAD condition," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 278-293.
    10. Jia, You & Wu, Huaiqin & Cao, Jinde, 2020. "Non-fragile robust finite-time synchronization for fractional-order discontinuous complex networks with multi-weights and uncertain couplings under asynchronous switching," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    11. Zhang, Weiwei & Zhang, Hai & Cao, Jinde & Zhang, Hongmei & Chen, Dingyuan, 2020. "Synchronization of delayed fractional-order complex-valued neural networks with leakage delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    12. Zhang, Lan & Yang, Xinsong & Xu, Chen & Feng, Jianwen, 2017. "Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control," Applied Mathematics and Computation, Elsevier, vol. 306(C), pages 22-30.
    13. Jianbao Zhang & Yi Wang & Zhongjun Ma & Jianlong Qiu & Fawaz Alsaadi, 2018. "Intermittent Control for Cluster-Delay Synchronization in Directed Networks," Complexity, Hindawi, vol. 2018, pages 1-9, February.
    14. Beibei Guo & Yu Xiao, 2023. "Synchronization of Markov Switching Inertial Neural Networks with Mixed Delays under Aperiodically On-Off Adaptive Control," Mathematics, MDPI, vol. 11(13), pages 1-15, June.
    15. Liu, Xiaonan & Kao, Yonggui, 2021. "Aperiodically intermittent pinning outer synchronization control for delayed complex dynamical networks with reaction-diffusion terms," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    16. Zhang, Weiwei & Sha, Chunlin & Cao, Jinde & Wang, Guanglan & Wang, Yuan, 2021. "Adaptive quaternion projective synchronization of fractional order delayed neural networks in quaternion field," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    17. Zhuang, Guangming & Xu, Shengyuan & Xia, Jianwei & Ma, Qian & Zhang, Zhengqiang, 2019. "Non-fragile delay feedback control for neutral stochastic Markovian jump systems with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 21-32.
    18. Zhang, Hai & Cheng, Yuhong & Zhang, Hongmei & Zhang, Weiwei & Cao, Jinde, 2022. "Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 341-357.
    19. Fei Wang & Zhaowen Zheng & Yongqing Yang, 2019. "Synchronization of Complex Dynamical Networks with Hybrid Time Delay under Event-Triggered Control: The Threshold Function Method," Complexity, Hindawi, vol. 2019, pages 1-17, December.
    20. Li, Xuechen & Wang, Nan & Lu, Jianquan & Alsaadi, Fuad E., 2019. "Pinning outer synchronization of partially coupled dynamical networks with complex inner coupling matrices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 497-509.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:562:y:2021:i:c:s0378437120306403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.