IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v153y2021ip1s0960077921009231.html
   My bibliography  Save this article

Extreme events in a forced BVP oscillator: Experimental and numerical studies

Author

Listed:
  • Thangavel, Bhagyaraj
  • Srinivasan, Sabarathinam
  • Kathamuthu, Thamilmaran

Abstract

In this work, we report the existence of extreme events in the well known Bonhoeffer-van der Pol (BVP) oscillator under the excitation of a periodically forced voltage. Extreme events refer to the sudden and random increase in the amplitude of one or more of the state variables of the dynamical system and arise because of the incidence of interior crises or the presence of discontinuous boundaries or intermittency. We have chosen this system because of the fact that it has spawned several systems modelling neuronal dynamics such as Hindmarsh-Rose (HR) and Hodgkin-Huxley (HH) models. Our investigations involve both laboratory experiments and numerical simulations. We have obtained time plots, phase portraits, Poincaré maps, bifurcation graphs, Lyapunov exponents and signal to noise ratio (SNR) to study the general dynamics and to confirm the presence of extreme events, we have used statistical measures such as phase slip analysis, distribution functions for both experimental and numerical data. To the best of our knowledge, we believe that it is for the first time that the occurrence of extreme event has been reported using both real time experimental and numerical studies on this forced BVP system.

Suggested Citation

  • Thangavel, Bhagyaraj & Srinivasan, Sabarathinam & Kathamuthu, Thamilmaran, 2021. "Extreme events in a forced BVP oscillator: Experimental and numerical studies," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
  • Handle: RePEc:eee:chsofr:v:153:y:2021:i:p1:s0960077921009231
    DOI: 10.1016/j.chaos.2021.111569
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921009231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vladimir Filimonov & Didier Sornette, 2014. "Power law scaling and "Dragon-Kings" in distributions of intraday financial drawdowns," Papers 1407.5037, arXiv.org, revised Apr 2015.
    2. N. Boers & B. Bookhagen & H. M. J. Barbosa & N. Marwan & J. Kurths & J. A. Marengo, 2014. "Prediction of extreme floods in the eastern Central Andes based on a complex networks approach," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    3. Langousis, Andreas & Veneziano, Daniele & Furcolo, Pierluigi & Lepore, Chiara, 2009. "Multifractal rainfall extremes: Theoretical analysis and practical estimation," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1182-1194.
    4. Vladimir FILIMONOV & Didier SORNETTE, 2014. "Power Law Scaling and 'Dragon-Kings' in Distributions of Intraday Financial Drawdowns," Swiss Finance Institute Research Paper Series 14-48, Swiss Finance Institute, revised Apr 2015.
    5. Filimonov, Vladimir & Sornette, Didier, 2015. "Power law scaling and “Dragon-Kings” in distributions of intraday financial drawdowns," Chaos, Solitons & Fractals, Elsevier, vol. 74(C), pages 27-45.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manivelan, S.V. & Sabarathinam, S. & Thamilmaran, K. & Manimehan, I., 2024. "Dynamical instabilities cause extreme events in a theoretical Brusselator model," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    2. Wang, Zhen & Ahmadi, Atefeh & Tian, Huaigu & Jafari, Sajad & Chen, Guanrong, 2023. "Lower-dimensional simple chaotic systems with spectacular features," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fruehwirt, Wolfgang & Hochfilzer, Leonhard & Weydemann, Leonard & Roberts, Stephen, 2021. "Cumulation, crash, coherency: A cryptocurrency bubble wavelet analysis," Finance Research Letters, Elsevier, vol. 40(C).
    2. Grobys, Klaus, 2023. "A finite-time singularity in the dynamics of the US equity market: Will the US equity market eventually collapse?," International Review of Financial Analysis, Elsevier, vol. 89(C).
    3. Junqing Tang & Hans R. Heinimann, 2019. "Quantitative evaluation of consecutive resilience cycles in stock market performance: A systems-oriented approach," Papers 1903.03201, arXiv.org.
    4. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman & AL-Dhurafi, Nasr Ahmed, 2020. "The power-law distribution for the income of poor households," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    5. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman & Hussain, Saiful Izzuan, 2019. "A robust and efficient estimator for the tail index of inverse Pareto distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 431-439.
    6. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman, 2018. "Optimal threshold for Pareto tail modelling in the presence of outliers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 169-180.
    7. Takumi Sueshige & Didier Sornette & Hideki Takayasu & Misako Takayasu, 2019. "Classification of position management strategies at the order-book level and their influences on future market-price formation," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-19, August.
    8. Fenying Cai & Caihong Liu & Dieter Gerten & Song Yang & Tuantuan Zhang & Kaiwen Li & Jürgen Kurths, 2024. "Sketching the spatial disparities in heatwave trends by changing atmospheric teleconnections in the Northern Hemisphere," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Felix M. Strnad & Jakob Schlör & Ruth Geen & Niklas Boers & Bedartha Goswami, 2023. "Propagation pathways of Indo-Pacific rainfall extremes are modulated by Pacific sea surface temperatures," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Ju-Young Shin & Changsam Jeong & Jun-Haeng Heo, 2018. "A Novel Statistical Method to Temporally Downscale Wind Speed Weibull Distribution Using Scaling Property," Energies, MDPI, vol. 11(3), pages 1-27, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:153:y:2021:i:p1:s0960077921009231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.