IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v321y2018icp223-243.html
   My bibliography  Save this article

The Lie-group method based on radial basis functions for solving nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation in arbitrary domains

Author

Listed:
  • Hajiketabi, M.
  • Abbasbandy, S.
  • Casas, F.

Abstract

The aim of this paper is to introduce a new numerical method for solving the nonlinear generalized Benjamin–Bona–Mahony–Burgers (GBBMB) equation. This method is combination of group preserving scheme (GPS) with radial basis functions (RBFs), which takes advantage of two powerful methods, one as geometric numerical integration method and the other meshless method. Thus, we introduce this method as the Lie-group method based on radial basis functions (LG–RBFs). In this method, we use Kansas approach to approximate the spatial derivatives and then we apply GPS method to approximate first-order time derivative. One of the important advantages of the developed method is that it can be applied to problems on arbitrary geometry with high dimensions. To demonstrate this point, we solve nonlinear GBBMB equation on various geometric domains in one, two and three dimension spaces. The results of numerical experiments are compared with analytical solutions and the method presented in Dehghan et al. (2014) to confirm the accuracy and efficiency of the presented method.

Suggested Citation

  • Hajiketabi, M. & Abbasbandy, S. & Casas, F., 2018. "The Lie-group method based on radial basis functions for solving nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation in arbitrary domains," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 223-243.
  • Handle: RePEc:eee:apmaco:v:321:y:2018:i:c:p:223-243
    DOI: 10.1016/j.amc.2017.10.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317307609
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.10.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hashemi, M.S., 2021. "A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Muaz Seydaoğlu, 2019. "A Meshless Method for Burgers’ Equation Using Multiquadric Radial Basis Functions With a Lie-Group Integrator," Mathematics, MDPI, vol. 7(2), pages 1-11, January.
    3. Hajiketabi, M. & Casas, F., 2020. "Numerical integrators based on the Magnus expansion for nonlinear dynamical systems," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    4. Oruç, Ömer, 2021. "A radial basis function finite difference (RBF-FD) method for numerical simulation of interaction of high and low frequency waves: Zakharov–Rubenchik equations," Applied Mathematics and Computation, Elsevier, vol. 394(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:321:y:2018:i:c:p:223-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.