Stochastic controllability of semilinear fractional control differential equations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2023.113858
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Vijayakumar, V. & Udhayakumar, R., 2020. "Results on approximate controllability for non-densely defined Hilfer fractional differential system with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- P. Balasubramaniam & J. P. Dauer, 2001. "Controllability of semilinear stochastic evolution equations in Hilbert space," International Journal of Stochastic Analysis, Hindawi, vol. 14, pages 1-11, January.
- Singh, Ajeet & Shukla, Anurag & Vijayakumar, V. & Udhayakumar, R., 2021. "Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- Sivashankar, M. & Sabarinathan, S. & Nisar, Kottakkaran Sooppy & Ravichandran, C. & Kumar, B.V. Senthil, 2023. "Some properties and stability of Helmholtz model involved with nonlinear fractional difference equations and its relevance with quadcopter," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R., 2020. "A new approach on approximate controllability of fractional evolution inclusions of order 1 < r < 2 with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shukla, Anurag & Vijayakumar, V. & Nisar, Kottakkaran Sooppy, 2022. "A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order r∈(1,2)," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
- Chen, Weihao & Liu, Yansheng & Zhao, Daliang, 2024. "Approximate controllability for a class of stochastic impulsive evolution system with infinite delay involving the fractional substantial derivative," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
- Kavitha, K. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy & Udhayakumar, R., 2021. "Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
- Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy, 2021. "A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order r∈(1,2) with delay," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
- Abdelhamid Mohammed Djaouti & Zareen A. Khan & Muhammad Imran Liaqat & Ashraf Al-Quran, 2024. "A Study of Some Generalized Results of Neutral Stochastic Differential Equations in the Framework of Caputo–Katugampola Fractional Derivatives," Mathematics, MDPI, vol. 12(11), pages 1-20, May.
- Dhayal, Rajesh & Zhu, Quanxin, 2023. "Stability and controllability results of ψ-Hilfer fractional integro-differential systems under the influence of impulses," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Selvam, Anjapuli Panneer & Govindaraj, Venkatesan & Ahmad, Hijaz, 2024. "Examining reachability criteria for fractional dynamical systems with mixed delays in control utilizing ψ-Hilfer pseudo-fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
- Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R. & Zhou, Yong, 2020. "A new approach on the approximate controllability of fractional differential evolution equations of order 1 < r < 2 in Hilbert spaces," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
- Mohan Raja, M. & Vijayakumar, V., 2022. "Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order r ∈ (1,2) with sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
- Boudjerida, Assia & Seba, Djamila, 2021. "Approximate controllability of hybrid Hilfer fractional differential inclusions with non-instantaneous impulses," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- Singh, Ajeet & Shukla, Anurag & Vijayakumar, V. & Udhayakumar, R., 2021. "Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- Sivajiganesan Sivasankar & Ramalingam Udhayakumar & Velmurugan Subramanian & Ghada AlNemer & Ahmed M. Elshenhab, 2022. "Existence of Hilfer Fractional Stochastic Differential Equations with Nonlocal Conditions and Delay via Almost Sectorial Operators," Mathematics, MDPI, vol. 10(22), pages 1-18, November.
- Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2022. "A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R., 2020. "Results on the existence and controllability of fractional integro-differential system of order 1 < r < 2 via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Lu Zhang & Caishi Wang & Jinshu Chen, 2023. "Interacting Stochastic Schrödinger Equation," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
- Mei-Qi, Wang & Wen-Li, Ma & En-Li, Chen & Yu-Jian, Chang & Cui-Yan, Wang, 2022. "Principal resonance analysis of piecewise nonlinear oscillator with fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
- Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R., 2020. "A new approach on approximate controllability of fractional evolution inclusions of order 1 < r < 2 with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
- Daliang Zhao, 2023. "Approximate Controllability for a Class of Semi-Linear Fractional Integro-Differential Impulsive Evolution Equations of Order 1 < α < 2 with Delay," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
- Bienvenido Barraza Martínez & Jonathan González Ospino & Rogelio Grau Acuña & Jairo Hernández Monzón, 2022. "Parameter–Elliptic Fourier Multipliers Systems and Generation of Analytic and C ∞ Semigroups," Mathematics, MDPI, vol. 10(5), pages 1-19, February.
- Haq, Abdul, 2022. "Partial-approximate controllability of semi-linear systems involving two Riemann-Liouville fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
More about this item
Keywords
Stochastic controllability; Fractional semilinear system; Reachable set; Schauder fixed point theorem;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007592. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.