IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v183y2024ics0960077924004594.html
   My bibliography  Save this article

On controllability for Sobolev-type fuzzy Hilfer fractional integro-differential inclusions with Clarke subdifferential

Author

Listed:
  • Zhang, Chuanlin
  • Ye, Guoju
  • Liu, Wei
  • Liu, Xuelong

Abstract

In this paper, our main purpose is to search and obtain the controllability for Sobolev-type fuzzy Hilfer fractional integro-differential inclusions with Clarke subdifferential. Some sufficient conditions for the controllability results of this inclusion problem are proposed by using related techniques of fuzzy set theory, Sobolev-type, fractional calculus and Clarke subdifferential. The theorem of the controllability results is proved by Bohnenblust–Karlin fixed point theorem. In addition, we show an example to explain the controllability results of this inclusion problem.

Suggested Citation

  • Zhang, Chuanlin & Ye, Guoju & Liu, Wei & Liu, Xuelong, 2024. "On controllability for Sobolev-type fuzzy Hilfer fractional integro-differential inclusions with Clarke subdifferential," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004594
    DOI: 10.1016/j.chaos.2024.114907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924004594
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, Hamdy M. & Zhu, Quanxin, 2023. "Exploration nonlocal controllability for Hilfer fractional differential inclusions with Clarke subdifferential and nonlinear noise," Statistics & Probability Letters, Elsevier, vol. 195(C).
    2. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2021. "A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order 1," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1003-1026.
    3. Nisar, Kottakkaran Sooppy & Jothimani, K. & Kaliraj, K. & Ravichandran, C., 2021. "An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Gu, Haibo & Trujillo, Juan J., 2015. "Existence of mild solution for evolution equation with Hilfer fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 344-354.
    5. Kavitha, K. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy & Udhayakumar, R., 2021. "Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haq, Abdul, 2022. "Partial-approximate controllability of semi-linear systems involving two Riemann-Liouville fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Mohan Raja, M. & Vijayakumar, V., 2022. "Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order r ∈ (1,2) with sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    3. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy, 2021. "A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order r∈(1,2) with delay," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    4. Shukla, Anurag & Vijayakumar, V. & Nisar, Kottakkaran Sooppy, 2022. "A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order r∈(1,2)," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    5. Mei-Qi, Wang & Wen-Li, Ma & En-Li, Chen & Yu-Jian, Chang & Cui-Yan, Wang, 2022. "Principal resonance analysis of piecewise nonlinear oscillator with fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    6. Hussain, Sadam & Sarwar, Muhammad & Abodayeh, Kamaleldin & Promsakon, Chanon & Sitthiwirattham, Thanin, 2024. "Controllability of Hilfer fractional neutral impulsive stochastic delayed differential equations with nonlocal conditions," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    7. Ahmed, Hamdy M. & Zhu, Quanxin, 2023. "Exploration nonlocal controllability for Hilfer fractional differential inclusions with Clarke subdifferential and nonlinear noise," Statistics & Probability Letters, Elsevier, vol. 195(C).
    8. Lakshmi Priya, P.K. & Kaliraj, K., 2022. "An application of fixed point technique of Rothe’s-type to interpret the controllability criteria of neutral nonlinear fractional ordered impulsive system," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    9. Nawapol Phuangthong & Sotiris K. Ntouyas & Jessada Tariboon & Kamsing Nonlaopon, 2021. "Nonlocal Sequential Boundary Value Problems for Hilfer Type Fractional Integro-Differential Equations and Inclusions," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    10. B. Radhakrishnan & T. Sathya, 2022. "Controllability of Hilfer Fractional Langevin Dynamical System with Impulse in an Abstract Weighted Space," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 265-281, October.
    11. Ahmed, Hamdy M. & El-Borai, Mahmoud M., 2018. "Hilfer fractional stochastic integro-differential equations," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 182-189.
    12. Asmae Tajani & Fatima-Zahrae El Alaoui, 2023. "Boundary Controllability of Riemann–Liouville Fractional Semilinear Evolution Systems," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 767-780, August.
    13. Surang Sitho & Sotiris K. Ntouyas & Ayub Samadi & Jessada Tariboon, 2021. "Boundary Value Problems for ψ -Hilfer Type Sequential Fractional Differential Equations and Inclusions with Integral Multi-Point Boundary Conditions," Mathematics, MDPI, vol. 9(9), pages 1-18, April.
    14. Boudjerida, Assia & Seba, Djamila, 2021. "Approximate controllability of hybrid Hilfer fractional differential inclusions with non-instantaneous impulses," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    15. Dineshkumar, Chendrayan & Jeong, Jae Hoon & Joo, Young Hoon, 2024. "Stochastic exponential stabilization and optimal control results for a class of fractional order equations," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    16. Veeresha, P., 2022. "The efficient fractional order based approach to analyze chemical reaction associated with pattern formation," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    17. Athasit Wongcharoen & Sotiris K. Ntouyas & Jessada Tariboon, 2020. "Boundary Value Problems for Hilfer Fractional Differential Inclusions with Nonlocal Integral Boundary Conditions," Mathematics, MDPI, vol. 8(11), pages 1-11, October.
    18. Kaliraj, K. & Manjula, M. & Ravichandran, C., 2022. "New existence results on nonlocal neutral fractional differential equation in concepts of Caputo derivative with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    19. Sivajiganesan Sivasankar & Ramalingam Udhayakumar & Velmurugan Subramanian & Ghada AlNemer & Ahmed M. Elshenhab, 2022. "Existence of Hilfer Fractional Stochastic Differential Equations with Nonlocal Conditions and Delay via Almost Sectorial Operators," Mathematics, MDPI, vol. 10(22), pages 1-18, November.
    20. Debbouche, Amar & Antonov, Valery, 2017. "Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 140-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.