IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v151y2021ics0960077921006147.html
   My bibliography  Save this article

BERTERS: Multimodal representation learning for expert recommendation system with transformers and graph embeddings

Author

Listed:
  • Nikzad-Khasmakhi, N.
  • Balafar, M.A.
  • Reza Feizi-Derakhshi, M.
  • Motamed, Cina

Abstract

An expert recommendation system suggests relevant experts of a particular topic based on three different scores authority, text similarity, and reputation. Most of the previous studies individually compute these scores and join them with a linear combination strategy. While, in this paper, we introduce a transfer learning-based and multimodal approach, called BERTERS, that presents each expert candidate by a single vector representation that includes these scores in itself. BERTERS determines a representation for each candidate that presents the candidate’s level of knowledge, popularity and influence, and history. BERTERS directly uses both transformers and the graph embedding techniques to convert the content published by candidates and collaborative relationships between them into low-dimensional vectors which show the candidates’ text similarity and authority scores. Also, to enhance the accuracy of recommendation, BERTERS takes into account additional features as reputation score. We conduct extensive experiments over the multi-label classification, recommendation, and visualization tasks. Also, we assess its performance on four different classifiers, diverse train ratios, and various embedding sizes. In the classification task, BERTERS strengthens the performance on Micro-F1 and Macro-F1 metrics by 23.40% and 34.45% compared with single-modality based methods. Furthermore, BERTERS achieves a gain of 9.12% in comparison with the baselines. Also, the results prove the capability of BERTERS to extend into a variety of domains such as academic and CQA to find experts. Since our proposed expert embeddings contain rich semantic and syntactic information of the candidate, BERTERS resulted in significantly improved performance over the baselines in all tasks.

Suggested Citation

  • Nikzad-Khasmakhi, N. & Balafar, M.A. & Reza Feizi-Derakhshi, M. & Motamed, Cina, 2021. "BERTERS: Multimodal representation learning for expert recommendation system with transformers and graph embeddings," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921006147
    DOI: 10.1016/j.chaos.2021.111260
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921006147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asgari-Chenaghlu, Meysam & Feizi-Derakhshi, Mohammad-Reza & farzinvash, Leili & Balafar, Mohammad-Ali & Motamed, Cina, 2021. "TopicBERT: A cognitive approach for topic detection from multimodal post stream using BERT and memory–graph," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
    3. Altan, Aytaç & Karasu, Seçkin, 2020. "Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Nasiri, Elahe & Berahmand, Kamal & Li, Yuefeng, 2021. "A new link prediction in multiplex networks using topologically biased random walks," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ban, Jung-Chao & Chang, Chih-Hung & Hong, Jyy-I & Wu, Yu-Liang, 2021. "Mathematical Analysis of Spread Models: From the viewpoints of Deterministic and random cases," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Chen, Xi & Yu, Ruyi & Ullah, Sajid & Wu, Dianming & Li, Zhiqiang & Li, Qingli & Qi, Honggang & Liu, Jihui & Liu, Min & Zhang, Yundong, 2022. "A novel loss function of deep learning in wind speed forecasting," Energy, Elsevier, vol. 238(PB).
    3. Kashkynbayev, Ardak & Cao, Jinde & Suragan, Durvudkhan, 2021. "Global Lagrange stability analysis of retarded SICNNs," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Yao, Qijia, 2021. "Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Zhu, Ping, 2021. "An equivalent analytical method to deal with cross-correlated exponential type noises in the nonlinear dynamic system," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    7. Alam, Muntasir & Ida, Yuki & Tanimoto, Jun, 2021. "Abrupt epidemic outbreak could be well tackled by multiple pre-emptive provisions-A game approach considering structured and unstructured populations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    8. Rajpal, Sheetal & Lakhyani, Navin & Singh, Ayush Kumar & Kohli, Rishav & Kumar, Naveen, 2021. "Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    9. Hu, Rongchun & Zhang, Dongxu & Gu, Xudong, 2022. "Reliability analysis of a class of stochastically excited nonlinear Markovian jump systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    10. Mohammadi, Hakimeh & Kumar, Sunil & Rezapour, Shahram & Etemad, Sina, 2021. "A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    11. Shabani, Masoume & Wallin, Fredrik & Dahlquist, Erik & Yan, Jinyue, 2022. "Techno-economic assessment of battery storage integrated into a grid-connected and solar-powered residential building under different battery ageing models," Applied Energy, Elsevier, vol. 318(C).
    12. Zhou, Ping & Yao, Zhao & Ma, Jun & Zhu, Zhigang, 2021. "A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    13. Yao, Qijia & Alsaade, Fawaz W. & Al-zahrani, Mohammed S. & Jahanshahi, Hadi, 2023. "Fixed-time neural control for output-constrained synchronization of second-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    14. Wang, Qiubao & Han, Zikun & Zhang, Xing & Yang, Yuejuan, 2021. "Dynamics of the delay-coupled bubble system combined with the stochastic term," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    15. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    16. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    17. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    18. Mehrpooya, Mehdi & Ansarinasab, Hojat & Mousavi, Seyed Ali, 2021. "Life cycle assessment and exergoeconomic analysis of the multi-generation system based on fuel cell for methanol, power, and heat production," Renewable Energy, Elsevier, vol. 172(C), pages 1314-1332.
    19. Marquina, Jesús & Colinet, María José & Pablo-Romero, María del P., 2021. "The economic value of olive sector biomass for thermal and electrical uses in Andalusia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    20. Xu, Yuxin & Gao, Fei, 2024. "A novel higher-order Deffuant–Weisbuch networks model incorporating the Susceptible Infected Recovered framework," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921006147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.