IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v151y2021ics0960077921005683.html
   My bibliography  Save this article

Nonlinear analysis and minimum L2-norm control in memcapacitor-based hyperchaotic system via online particle swarm optimization

Author

Listed:
  • Setoudeh, F.
  • Sedigh, A. Khaki

Abstract

Memristor and memcapacitor are two novel memristive devices. Memristive nonlinear elements behave like synapses in the nervous system. In this study, an original physical model of HP memristor is presented based on the movement of the boundary between the doped and undoped regions by causing the charged dopants to drift. Furthermore, a charge-controlled memcapacitor is used to design a novel hyperchaotic oscillator. It is found that the hyperchaotic oscillator, which is based on memristor and memcapacitor, can realize high-security data encryption. Then, the problem of controlling chaos is addressed in the proposed memcapacitor-based hyperchaotic memristor oscillator using a simple feedback control. Moreover, in this study, a novel approach is used to stabilize chaos using the L2–norm minimization method. The feedback control is applied to minimize the L2–norm of state variables as the cost function. An online particle swarm optimization (PSO) technique is developed to design the feedback control using L2–norm minimization. The sensitivity to initial condition is examined for different initial conditions. The proposed technique can be used for chaos stabilization in a complex dynamic system.

Suggested Citation

  • Setoudeh, F. & Sedigh, A. Khaki, 2021. "Nonlinear analysis and minimum L2-norm control in memcapacitor-based hyperchaotic system via online particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921005683
    DOI: 10.1016/j.chaos.2021.111214
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921005683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Spagnolo & A. Dubkov & N. Agudov, 2004. "Enhancement of stability in randomly switching potential with metastable state," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 40(3), pages 273-281, August.
    2. Vinod K. Sangwan & Hong-Sub Lee & Hadallia Bergeron & Itamar Balla & Megan E. Beck & Kan-Sheng Chen & Mark C. Hersam, 2018. "Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide," Nature, Nature, vol. 554(7693), pages 500-504, February.
    3. Mikhaylov, A.N. & Guseinov, D.V. & Belov, A.I. & Korolev, D.S. & Shishmakova, V.A. & Koryazhkina, M.N. & Filatov, D.O. & Gorshkov, O.N. & Maldonado, D. & Alonso, F.J. & Roldán, J.B. & Krichigin, A.V. , 2021. "Stochastic resonance in a metal-oxide memristive device," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Minati, L. & Gambuzza, L.V. & Thio, W.J. & Sprott, J.C. & Frasca, M., 2020. "A chaotic circuit based on a physical memristor," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Bernardo Spagnolo & Davide Valenti, 2008. "Volatility Effects on the Escape Time in Financial Market Models," Papers 0810.1625, arXiv.org.
    6. Abir Lassoued & Olfa Boubaker, 2017. "Dynamic Analysis and Circuit Design of a Novel Hyperchaotic System with Fractional-Order Terms," Complexity, Hindawi, vol. 2017, pages 1-10, October.
    7. E. L. Pankratov & B. Spagnolo, 2005. "Optimization of impurity profile for p-n-junction in heterostructures," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 46(1), pages 15-19, July.
    8. A. Asamitsu & Y. Tomioka & H. Kuwahara & Y. Tokura, 1997. "Current switching of resistive states in magnetoresistive manganites," Nature, Nature, vol. 388(6637), pages 50-52, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Peiluan & Han, Liqin & Xu, Changjin & Peng, Xueqing & Rahman, Mati ur & Shi, Sairu, 2023. "Dynamical properties of a meminductor chaotic system with fractal–fractional power law operator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    2. Xiu, Chunbo & Fang, Jingyao & Ma, Xin, 2022. "Design and circuit implementations of multimemristive hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. Liu, Lianggui & Zhang, Rui & Chen, Qiuxia, 2022. "High-performance global peak tracking technique for PV arrays subject to rapidly changing PSC," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Setoudeh, Farbod & Dousti, Massoud, 2022. "Analysis and implementation of a meminductor-based colpitts sinusoidal oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Kim, Dahye & Kim, Sunghun & Kim, Sungjun, 2021. "Logic-in-memory application of CMOS compatible silicon nitride memristor," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    4. Setoudeh, Farbod & Dezhdar, Mohammad Matin & Najafi, M., 2022. "Nonlinear analysis and chaos synchronization of a memristive-based chaotic system using adaptive control technique in noisy environments," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. Taheri, Alireza Ghomi & Setoudeh, Farbod & Tavakoli, Mohammad Bagher & Feizi, Esmaeil, 2022. "Nonlinear analysis of memcapacitor-based hyperchaotic oscillator by using adaptive multi-step differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    6. Mahata, Chandreswar & Kim, Sungjun, 2021. "Electrical and optical artificial synapses properties of TiN-nanoparticles incorporated HfAlO-alloy based memristor," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    7. Ryu, Hojeong & Kim, Sungjun, 2021. "Implementation of a reservoir computing system using the short-term effects of Pt/HfO2/TaOx/TiN memristors with self-rectification," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    8. Agudov, N.V. & Dubkov, A.A. & Safonov, A.V. & Krichigin, A.V. & Kharcheva, A.A. & Guseinov, D.V. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Antonov, I.N. & Carollo, A. & Spagnolo, B., 2021. "Stochastic model of memristor based on the length of conductive region," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    9. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    10. Alsuwian, Turki & Kousar, Farhana & Rasheed, Umbreen & Imran, Muhammad & Hussain, Fayyaz & Arif Khalil, R.M. & Algadi, Hassan & Batool, Najaf & Khera, Ejaz Ahmad & Kiran, Saira & Ashiq, Muhammad Naeem, 2021. "First principles investigation of physically conductive bridge filament formation of aluminum doped perovskite materials for neuromorphic memristive applications," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    11. Du, Chuanhong & Liu, Licai & Zhang, Zhengping & Yu, Shixing, 2021. "Double memristors oscillator with hidden stacked attractors and its multi-transient and multistability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    12. Park, Jinwoo & Kim, Tae-Hyeon & Kim, Sungjoon & Lee, Geun Ho & Nili, Hussein & Kim, Hyungjin, 2021. "Conduction mechanism effect on physical unclonable function using Al2O3/TiOX memristors," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Mikhaylov, A.N. & Guseinov, D.V. & Belov, A.I. & Korolev, D.S. & Shishmakova, V.A. & Koryazhkina, M.N. & Filatov, D.O. & Gorshkov, O.N. & Maldonado, D. & Alonso, F.J. & Roldán, J.B. & Krichigin, A.V. , 2021. "Stochastic resonance in a metal-oxide memristive device," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    14. Surazhevsky, I.A. & Demin, V.A. & Ilyasov, A.I. & Emelyanov, A.V. & Nikiruy, K.E. & Rylkov, V.V. & Shchanikov, S.A. & Bordanov, I.A. & Gerasimova, S.A. & Guseinov, D.V. & Malekhonova, N.V. & Pavlov, D, 2021. "Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    15. Filatov, D.O. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Shenina, M.E. & Antonov, I.N. & Gorshkov, O.N. & Agudov, N.V. & Carollo, A. & Valenti, D. & Spagnolo, B., 2022. "Effect of internal noise on the relaxation time of an yttria stabilized zirconia-based memristor," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    16. Revin, L.S. & Pankratov, A.L., 2021. "Detection of bias inhomogeneity in Josephson junctions by switching current distributions," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    17. Ma, Tianchi & Shen, Junxian & Song, Di & Xu, Feiyun, 2022. "Unsaturated piecewise bistable stochastic resonance with three kinds of asymmetries driven by multiplicative and additive noise," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    18. Wang, Weiwei & Ralescu, Dan A., 2021. "Valuation of lookback option under uncertain volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    19. Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    20. Wang, Yang & Li, Huanyun & Guan, Yan & Chen, Mingshu, 2022. "Predefined-time chaos synchronization of memristor chaotic systems by using simplified control inputs," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921005683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.