IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v166y2023ics0960077922011705.html
   My bibliography  Save this article

Critical visit to the chimera world

Author

Listed:
  • Ferré, M.A.

Abstract

Chimera states correspond to a spatiotemporal phenomenon that accounts for the coexistence between coherence and incoherence dynamics in homogeneous systems. Initially observed in non-locally coupled phase oscillators, this phenomenon has been observed in various systems, ranging from chaotic maps to time-delay systems and complex networks. This review revises different systems where chimera states are observed, focusing on theoretical and experimental contributions. At the same time, a critical vision of chimera states definitions, and some works are presented. Additionally, new research perspectives are given due to the chimera state field stage.

Suggested Citation

  • Ferré, M.A., 2023. "Critical visit to the chimera world," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922011705
    DOI: 10.1016/j.chaos.2022.112991
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922011705
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112991?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayyad, Marouane & Coulibaly, Saliya, 2021. "The cellular automata inside optical chimera states," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    2. Laurent Larger & Bogdan Penkovsky & Yuri Maistrenko, 2015. "Laser chimeras as a paradigm for multistable patterns in complex systems," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    3. Alvarez-Socorro, A.J. & Clerc, M.G. & Ferré, M.A., 2020. "Wandering walk of chimera states in a continuous medium," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Peter J. Menck & Jobst Heitzig & Jürgen Kurths & Hans Joachim Schellnhuber, 2014. "How dead ends undermine power grid stability," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shepelev, I.A. & Bukh, A.V. & Strelkova, G.I., 2022. "Anti-phase synchronization of waves in a multiplex network of van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Rybalova, E.V. & Zakharova, A. & Strelkova, G.I., 2021. "Interplay between solitary states and chimeras in multiplex neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    3. Arinushkin, P.A. & Vadivasova, T.E., 2021. "Nonlinear damping effects in a simplified power grid model based on coupled Kuramoto-like oscillators with inertia," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Ye, Jiachen & Ji, Peng & Waxman, David & Lin, Wei & Moreno, Yamir, 2020. "Impact of intra and inter-cluster coupling balance on the performance of nonlinear networked systems," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Khramenkov, Vladislav & Dmitrichev, Aleksei & Nekorkin, Vladimir, 2021. "Partial stability criterion for a heterogeneous power grid with hub structures," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Xiuqi Wu & Ying Zhang & Junsong Peng & Sonia Boscolo & Christophe Finot & Heping Zeng, 2022. "Farey tree and devil’s staircase of frequency-locked breathers in ultrafast lasers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Zhang, Ding-Xue & Zhao, Dan & Guan, Zhi-Hong & Wu, Yonghong & Chi, Ming & Zheng, Gui-Lin, 2016. "Probabilistic analysis of cascade failure dynamics in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 299-309.
    8. Semenov, Vladimir V. & Bukh, Andrei V. & Semenova, Nadezhda, 2023. "Delay-induced self-oscillation excitation in the Fitzhugh–Nagumo model: Regular and chaotic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    9. Xiaoge Bao & Qitong Hu & Peng Ji & Wei Lin & Jürgen Kurths & Jan Nagler, 2022. "Impact of basic network motifs on the collective response to perturbations," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Rybalova, E.V. & Strelkova, G.I. & Anishchenko, V.S., 2021. "Impact of sparse inter-layer coupling on the dynamics of a heterogeneous multilayer network of chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    11. Wei, Mengke & Han, Xiujing, 2024. "Fast–slow dynamics related to sharp transition behaviors in the Rayleigh oscillator with two slow square wave excitations," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    12. Ayyad, Marouane & Coulibaly, Saliya, 2021. "The cellular automata inside optical chimera states," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    13. Lacerda, Juliana C. & Freitas, Celso & Macau, Elbert E.N., 2022. "Elementary changes in topology and power transmission capacity can induce failures in power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    14. Li, Fan & Liu, Shuai & Li, Xiaola, 2023. "Effect of phase shift on the dynamics of a single-machine infinite-bus power system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    15. Dogonasheva, Olesia & Kasatkin, Dmitry & Gutkin, Boris & Zakharov, Denis, 2021. "Robust universal approach to identify travelling chimeras and synchronized clusters in spiking networks," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922011705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.