IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v143y2021ics0960077920308985.html
   My bibliography  Save this article

Numerical approach in the Hilbert space to solve a fuzzy Atangana-Baleanu fractional hybrid system

Author

Listed:
  • Hasan, Shatha
  • Al-Smadi, Mohammed
  • El-Ajou, Ahmad
  • Momani, Shaher
  • Hadid, Samir
  • Al-Zhour, Zeyad

Abstract

The pivotal aim of this paper is to investigate analytical and numerical solutions of fractional fuzzy hybrid system in Hilbert space. Such fuzzy systems are devoted to model control systems that are capable of controlling complex systems that have discrete events with continuous time dynamics. The fractional derivative is described in Atangana-Baleanu Caputo (ABC) sense, which is distinguished by its non-local and non-singular kernel. In this orientation, the main contribution of the current numerical investigation is to generalize the characterization theory of integer fuzzy IVP to the ABC-fractional derivative under a strongly generalized differentiability, and then apply the proposed method to deal with the fuzzy hybrid system numerically. This method optimized the approximate solutions based on orthogonalization Schmidt process on Sobolev spaces, which can be straightway employed in generating Fourier expansion within a sensible convergence rate. The reproducing kernel theory is employed to construct a series solution with parametric form for the considered model in the space of direct sum W22[a,b]⊕W22[a,b]. Some theorems related to convergence analysis and approximation error are also proved. Moreover, we obtain the exact solution for the fuzzy model by applying Laplace transform method. So, the results obtained using the proposed method are compared with those of exact solution. To show the effect of Atangana-Baleanu fractional operator, we compare the numerical solution of fractional fuzzy hybrid system with those of integer order. Two numerical examples are carried out to illustrate that such dynamical processes noticeably depend on time instant and time history, which can be efficiently modeled by employing the fractional calculus theory. Finally, the accuracy, efficiency, and simplicity of the proposed method are evident in both classical and fractional cases.

Suggested Citation

  • Hasan, Shatha & Al-Smadi, Mohammed & El-Ajou, Ahmad & Momani, Shaher & Hadid, Samir & Al-Zhour, Zeyad, 2021. "Numerical approach in the Hilbert space to solve a fuzzy Atangana-Baleanu fractional hybrid system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920308985
    DOI: 10.1016/j.chaos.2020.110506
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920308985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Azizollah Babakhani & Dumitru Baleanu, 2012. "Existence and Uniqueness of Solution for a Class of Nonlinear Fractional Order Differential Equations," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-14, June.
    2. Allahviranloo, Tofigh & Ghanbari, Behzad, 2020. "On the fuzzy fractional differential equation with interval Atangana–Baleanu fractional derivative approach," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Hasan, Shatha & El-Ajou, Ahmad & Hadid, Samir & Al-Smadi, Mohammed & Momani, Shaher, 2020. "Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    4. Al-Smadi, Mohammed & Arqub, Omar Abu, 2019. "Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 280-294.
    5. Atangana, Abdon, 2018. "Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 688-706.
    6. Al-Smadi, Mohammed & Arqub, Omar Abu & Shawagfeh, Nabil & Momani, Shaher, 2016. "Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 137-148.
    7. Abdon Atangana & Dumitru Baleanu, 2013. "Nonlinear Fractional Jaulent-Miodek and Whitham-Broer-Kaup Equations within Sumudu Transform," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2022. "Approximate Solution of Nonlinear Time-Fractional PDEs by Laplace Residual Power Series Method," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
    2. Laila F. Seddek & Essam R. El-Zahar & Jae Dong Chung & Nehad Ali Shah, 2023. "A Novel Approach to Solving Fractional-Order Kolmogorov and Rosenau–Hyman Models through the q-Homotopy Analysis Transform Method," Mathematics, MDPI, vol. 11(6), pages 1-11, March.
    3. Liaqat, Muhammad Imran & Khan, Adnan & Akgül, Ali, 2022. "Adaptation on power series method with conformable operator for solving fractional order systems of nonlinear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2021. "Adaptation of Residual-Error Series Algorithm to Handle Fractional System of Partial Differential Equations," Mathematics, MDPI, vol. 9(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2022. "Approximate Solution of Nonlinear Time-Fractional PDEs by Laplace Residual Power Series Method," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
    2. Hasan, Shatha & El-Ajou, Ahmad & Hadid, Samir & Al-Smadi, Mohammed & Momani, Shaher, 2020. "Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    3. Al-Smadi, Mohammed & Arqub, Omar Abu & Zeidan, Dia, 2021. "Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2021. "Adaptation of Residual-Error Series Algorithm to Handle Fractional System of Partial Differential Equations," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
    5. Yin, Baoli & Liu, Yang & Li, Hong, 2020. "A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    6. Bandaliyev, R.A. & Ibayev, E.A. & Omarova, K.K., 2021. "Investigation of fractional order differential equation for boundary functional of a semi-Markov random walk process with negative drift and positive jumps," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    8. Yüzbaşı, Şuayip & Yıldırım, Gamze, 2022. "A collocation method to solve the parabolic-type partial integro-differential equations via Pell–Lucas polynomials," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    9. Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
    10. Chatibi, Y. & El Kinani, E.H. & Ouhadan, A., 2019. "Variational calculus involving nonlocal fractional derivative with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 117-121.
    11. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    12. Asifa, & Kumam, Poom & Tassaddiq, Asifa & Watthayu, Wiboonsak & Shah, Zahir & Anwar, Talha, 2022. "Modeling and simulation based investigation of unsteady MHD radiative flow of rate type fluid; a comparative fractional analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 486-507.
    13. Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.
    14. Aliyu, Aliyu Isa & Inc, Mustafa & Yusuf, Abdullahi & Baleanu, Dumitru, 2018. "A fractional model of vertical transmission and cure of vector-borne diseases pertaining to the Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 268-277.
    15. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    16. Bonyah, Ebenezer & Gómez-Aguilar, J.F. & Adu, Augustina, 2018. "Stability analysis and optimal control of a fractional human African trypanosomiasis model," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 150-160.
    17. Fouladi, Somayeh & Dahaghin, Mohammad Shafi, 2022. "Numerical investigation of the variable-order fractional Sobolev equation with non-singular Mittag–Leffler kernel by finite difference and local discontinuous Galerkin methods," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    18. Marasi, H.R. & Derakhshan, M.H., 2023. "Numerical simulation of time variable fractional order mobile–immobile advection–dispersion model based on an efficient hybrid numerical method with stability and convergence analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 368-389.
    19. Ahmad, Shabir & Ullah, Aman & Arfan, Muhammad & Shah, Kamal, 2020. "On analysis of the fractional mathematical model of rotavirus epidemic with the effects of breastfeeding and vaccination under Atangana-Baleanu (AB) derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    20. Atangana, Abdon & Araz, Seda İğret, 2019. "Analysis of a new partial integro-differential equation with mixed fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 257-271.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920308985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.