IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v291y2016icp137-148.html
   My bibliography  Save this article

Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method

Author

Listed:
  • Al-Smadi, Mohammed
  • Arqub, Omar Abu
  • Shawagfeh, Nabil
  • Momani, Shaher

Abstract

The reproducing kernel method is a numerical as well as analytical technique for solving a large variety of ordinary and partial differential equations associated to different kind of boundary conditions, and usually provides the solutions in term of rapidly convergent series in the appropriate Hilbert spaces with components that can be elegantly computed. The aim of the present analysis is to implement a relatively recent computational method, reproducing kernel Hilbert space, for obtaining the solutions for systems of second-order differential equations with periodic boundary conditions. A reproducing kernel space is constructed in which the periodic conditions of the systems are satisfied, whilst, the smooth kernel functions are used throughout the evolution of the method to obtain the required grid points. An efficient construction is given to obtain the approximate solutions for the systems together with an existence proof of the exact solutions is proposed based upon the reproducing kernel theory. Convergence analysis and error behavior of the presented method are also discussed. In this approach, computational results of some numerical examples are presented to illustrate the viability, simplicity, and applicability of the algorithm developed.

Suggested Citation

  • Al-Smadi, Mohammed & Arqub, Omar Abu & Shawagfeh, Nabil & Momani, Shaher, 2016. "Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 137-148.
  • Handle: RePEc:eee:apmaco:v:291:y:2016:i:c:p:137-148
    DOI: 10.1016/j.amc.2016.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316303733
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geng, F.Z. & Qian, S.P. & Cui, M.G., 2015. "Improved reproducing kernel method for singularly perturbed differential-difference equations with boundary layer behavior," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 58-63.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan, Shatha & El-Ajou, Ahmad & Hadid, Samir & Al-Smadi, Mohammed & Momani, Shaher, 2020. "Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    2. Akgül, Ali, 2018. "A novel method for a fractional derivative with non-local and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 478-482.
    3. Hasan, Shatha & Al-Smadi, Mohammed & El-Ajou, Ahmad & Momani, Shaher & Hadid, Samir & Al-Zhour, Zeyad, 2021. "Numerical approach in the Hilbert space to solve a fuzzy Atangana-Baleanu fractional hybrid system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahihi, Hussein & Abbasbandy, Saeid & Allahviranloo, Tofigh, 2019. "Computational method based on reproducing kernel for solving singularly perturbed differential-difference equations with a delay," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 583-598.
    2. Allahviranloo, Tofigh & Sahihi, Hussein, 2021. "Reproducing kernel method to solve fractional delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    3. Kumar, Sunil & Kumar, B. V. Rathish, 2017. "A domain decomposition Taylor Galerkin finite element approximation of a parabolic singularly perturbed differential equation," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 508-522.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:291:y:2016:i:c:p:137-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.