IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v138y2020ics0960077920305117.html
   My bibliography  Save this article

The first 100 days: Modeling the evolution of the COVID-19 pandemic

Author

Listed:
  • Kaxiras, Efthimios
  • Neofotistos, Georgios
  • Angelaki, Eleni

Abstract

A simple analytical model for modeling the evolution of the 2020 COVID-19 pandemic is presented. The model is based on the numerical solution of the widely used Susceptible-Infectious-Removed (SIR) populations model for describing epidemics. We consider an expanded version of the original Kermack-McKendrick model, which includes a decaying value of the parameter β (the effective contact rate), interpreted as an effect of externally imposed conditions, to which we refer as the forced-SIR (FSIR) model. We introduce an approximate analytical solution to the differential equations that represent the FSIR model which gives very reasonable fits to real data for a number of countries over a period of 100 days (from the first onset of exponential increase, in China). The proposed model contains 3 adjustable parameters which are obtained by fitting actual data (up to April 28, 2020). We analyze these results to infer the physical meaning of the parameters involved. We use the model to make predictions about the total expected number of infections in each country as well as the date when the number of infections will have reached 99% of this total. We also compare key findings of the model with recently reported results on the high contagiousness and rapid spread of the disease.

Suggested Citation

  • Kaxiras, Efthimios & Neofotistos, Georgios & Angelaki, Eleni, 2020. "The first 100 days: Modeling the evolution of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920305117
    DOI: 10.1016/j.chaos.2020.110114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920305117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris Groendyke & David Welch & David R. Hunter, 2011. "Bayesian Inference for Contact Networks Given Epidemic Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(3), pages 600-616, September.
    2. Mingxin Zhang & Alexander Verbraeck & Rongqing Meng & Bin Chen & Xiaogang Qiu, 2016. "Modeling Spatial Contacts for Epidemic Prediction in a Large-Scale Artificial City," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(4), pages 1-3.
    3. Barmparis, G.D. & Tsironis, G.P., 2020. "Estimating the infection horizon of COVID-19 in eight countries with a data-driven approach," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    4. Tagliazucchi, E. & Balenzuela, P. & Travizano, M. & Mindlin, G.B. & Mininni, P.D., 2020. "Lessons from being challenged by COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ballı, Serkan, 2021. "Data analysis of Covid-19 pandemic and short-term cumulative case forecasting using machine learning time series methods," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Randolph Hall & Andrew Moore & Mingdong Lyu, 2023. "Tracking Covid-19 cases and deaths in the United States: metrics of pandemic progression derived from a queueing framework," Health Care Management Science, Springer, vol. 26(1), pages 79-92, March.
    4. Fokas, A.S. & Cuevas-Maraver, J. & Kevrekidis, P.G., 2020. "A quantitative framework for exploring exit strategies from the COVID-19 lockdown," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Gandzha, I.S. & Kliushnichenko, O.V. & Lukyanets, S.P., 2021. "Modeling and controlling the spread of epidemic with various social and economic scenarios," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    6. Noha S. Alghamdi & Saeed M. Alghamdi, 2022. "The Role of Digital Technology in Curbing COVID-19," IJERPH, MDPI, vol. 19(14), pages 1-12, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angeli, Mattia & Neofotistos, Georgios & Mattheakis, Marios & Kaxiras, Efthimios, 2022. "Modeling the effect of the vaccination campaign on the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    2. Fokas, A.S. & Cuevas-Maraver, J. & Kevrekidis, P.G., 2020. "A quantitative framework for exploring exit strategies from the COVID-19 lockdown," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Bimal Kumar Mishra, 2022. "Stochastic models on the transmission of novel COVID-19," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 599-603, April.
    4. Ghosh, Mousam & Ghosh, Swarnankur & Ghosh, Suman & Panda, Goutam Kumar & Saha, Pradip Kumar, 2021. "Dynamic model of infected population due to spreading of pandemic COVID-19 considering both intra and inter zone mobilization factors with rate of detection," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Fatima-Zohra Younsi & Djamila Hamdadou, 2021. "Dynamic Contact Network Simulation Model Based on Multi-Agent Systems," International Journal of Healthcare Information Systems and Informatics (IJHISI), IGI Global, vol. 16(4), pages 1-21, October.
    6. Alaeddine Mihoub & Hosni Snoun & Moez Krichen & Montassar Kahia & Riadh Bel Hadj Salah, 2020. "Predicting COVID-19 Spread Level using Socio-Economic Indicators and Machine Learning Techniques," Post-Print hal-03002886, HAL.
    7. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    8. Yeşilkanat, Cafer Mert, 2020. "Spatio-temporal estimation of the daily cases of COVID-19 in worldwide using random forest machine learning algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. de Souza, Silvio L.T. & Batista, Antonio M. & Caldas, Iberê L. & Iarosz, Kelly C. & Szezech Jr, José D., 2021. "Dynamics of epidemics: Impact of easing restrictions and control of infection spread," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Mishra, Bimal Kumar & Keshri, Ajit Kumar & Saini, Dinesh Kumar & Ayesha, Syeda & Mishra, Binay Kumar & Rao, Yerra Shankar, 2021. "Mathematical model, forecast and analysis on the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    11. Mudassar Arsalan & Omar Mubin & Fady Alnajjar & Belal Alsinglawi, 2020. "COVID-19 Global Risk: Expectation vs. Reality," IJERPH, MDPI, vol. 17(15), pages 1-10, August.
    12. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    13. Christos A. Kontovas & Krishna Sooprayen, 2020. "Maritime Cargo Prioritisation during a Prolonged Pandemic Lockdown Using an Integrated TOPSIS-Knapsack Technique: A Case Study on Small Island Developing States—The Rodrigues Island," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    14. Amaral, Marco A. & Oliveira, Marcelo M. de & Javarone, Marco A., 2021. "An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    15. Koutsellis, Themistoklis & Nikas, Alexandros, 2020. "A predictive model and country risk assessment for COVID-19: An application of the Limited Failure Population concept," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    16. Razvan G. Romanescu & Rob Deardon, 2017. "Fast Inference for Network Models of Infectious Disease Spread," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 666-683, September.
    17. Artalejo, J.R. & Economou, A. & Lopez-Herrero, M.J., 2015. "The stochastic SEIR model before extinction: Computational approaches," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 1026-1043.
    18. Milad Haghani & Michiel C. J. Bliemer, 2020. "Covid-19 pandemic and the unprecedented mobilisation of scholarly efforts prompted by a health crisis: Scientometric comparisons across SARS, MERS and 2019-nCoV literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2695-2726, December.
    19. Păcurar, Cristina-Maria & Necula, Bogdan-Radu, 2020. "An analysis of COVID-19 spread based on fractal interpolation and fractal dimension," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    20. Victor Zakharov & Yulia Balykina & Ovanes Petrosian & Hongwei Gao, 2020. "CBRR Model for Predicting the Dynamics of the COVID-19 Epidemic in Real Time," Mathematics, MDPI, vol. 8(10), pages 1-10, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920305117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.