IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v134y2020ics0960077920300862.html
   My bibliography  Save this article

Symmetry analysis of initial and boundary value problems for fractional differential equations in Caputo sense

Author

Listed:
  • Iskenderoglu, Gulistan
  • Kaya, Dogan

Abstract

In this work, we study Lie symmetry analysis of initial and boundary value problems (IBVPs) for partial differential equations (PDE) with Caputo fractional derivative. According to Bluman’s definition and theorem for the symmetry analysis of the PDE system, we determine the symmetries of the PDE with Caputo fractional derivative in general form and prove theorem for the above equation. We investigate the symmetry analysis of IBVP for a fractional diffusion and third-order fractional partial differential equation (FPDE). And as a result of applying the method, we get several solutions.

Suggested Citation

  • Iskenderoglu, Gulistan & Kaya, Dogan, 2020. "Symmetry analysis of initial and boundary value problems for fractional differential equations in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:chsofr:v:134:y:2020:i:c:s0960077920300862
    DOI: 10.1016/j.chaos.2020.109684
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920300862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atangana, Abdon & Qureshi, Sania, 2019. "Modeling attractors of chaotic dynamical systems with fractal–fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 320-337.
    2. Changpin Li & Deliang Qian & YangQuan Chen, 2011. "On Riemann-Liouville and Caputo Derivatives," Discrete Dynamics in Nature and Society, Hindawi, vol. 2011, pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Dilna & Michal Fečkan, 2022. "Exact Solvability Conditions for the Non-Local Initial Value Problem for Systems of Linear Fractional Functional Differential Equations," Mathematics, MDPI, vol. 10(10), pages 1-15, May.
    2. Kucche, Kishor D. & Sutar, Sagar T., 2021. "Analysis of nonlinear fractional differential equations involving Atangana-Baleanu-Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Ahmed Alsaedi & Amjad F. Albideewi & Sotiris K. Ntouyas & Bashir Ahmad, 2020. "On Caputo–Riemann–Liouville Type Fractional Integro-Differential Equations with Multi-Point Sub-Strip Boundary Conditions," Mathematics, MDPI, vol. 8(11), pages 1-14, October.
    4. Alessandra Jannelli & Maria Paola Speciale, 2024. "Fractional Boundary Layer Flow: Lie Symmetry Analysis and Numerical Solution," Mathematics, MDPI, vol. 12(2), pages 1-10, January.
    5. Zhang, Zhi-Yong & Liu, Cheng-Bao, 2022. "Leibniz-type rule of variable-order fractional derivative and application to build Lie symmetry framework," Applied Mathematics and Computation, Elsevier, vol. 430(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akgül, Ali & Partohaghighi, Mohammad, 2022. "New fractional modelling and control analysis of the circumscribed self-excited spherical strange attractor," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
    4. Zhokh, Alexey & Strizhak, Peter, 2018. "Thiele modulus having regard to the anomalous diffusion in a catalyst pellet," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 58-63.
    5. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    6. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    7. Balasubramaniam, P., 2022. "Solvability of Atangana-Baleanu-Riemann (ABR) fractional stochastic differential equations driven by Rosenblatt process via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    8. Ravi Agarwal & Snezhana Hristova & Donal O’Regan, 2021. "Stability Concepts of Riemann-Liouville Fractional-Order Delay Nonlinear Systems," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    9. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    10. Sekerci, Yadigar & Ozarslan, Ramazan, 2020. "Respiration Effect on Plankton–Oxygen Dynamics in view of non-singular time fractional derivatives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    11. Imran, M.A., 2020. "Application of fractal fractional derivative of power law kernel (FFP0Dxα,β) to MHD viscous fluid flow between two plates," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    12. Siddique, Imran & Akgül, Ali, 2020. "Analysis of MHD generalized first problem of Stokes’ in view of local and non-local fractal fractional differential operators," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    13. Christopher Nicholas Angstmann & Byron Alexander Jacobs & Bruce Ian Henry & Zhuang Xu, 2020. "Intrinsic Discontinuities in Solutions of Evolution Equations Involving Fractional Caputo–Fabrizio and Atangana–Baleanu Operators," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    14. Muhammad Ali Qureshi & Najeeb Alam Khan, 2024. "Clown face in 3D chaotic system integrated with memristor electronics, DNA encryption and fractional calculus," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(5), pages 1-16, May.
    15. Tomasz Raszkowski & Mariusz Zubert, 2020. "Investigation of Heat Diffusion at Nanoscale Based on Thermal Analysis of Real Test Structure," Energies, MDPI, vol. 13(9), pages 1-18, May.
    16. Babu, N. Ramesh & Balasubramaniam, P., 2022. "Master-slave synchronization of a new fractal-fractional order quaternion-valued neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    17. Dai, Houping & Feng, Yingxin & Wei, Xuedan & Chen, Dongdong & Zheng, Zhoushun & Wang, Jianzhong, 2023. "Space fractional-order modeling for the sintering process of metal fibers via Lattice Boltzmann method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 373-387.
    18. Saifullah, Sayed & Ali, Amir & Franc Doungmo Goufo, Emile, 2021. "Investigation of complex behaviour of fractal fractional chaotic attractor with mittag-leffler Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    19. Yu, Shuhong & Zhou, Yunxiu & Du, Tingsong, 2022. "Certain midpoint-type integral inequalities involving twice differentiable generalized convex mappings and applications in fractal domain," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Ahmad, Shabir & Ullah, Aman & Akgül, Ali, 2021. "Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:134:y:2020:i:c:s0960077920300862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.