IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i2p184-d1314142.html
   My bibliography  Save this article

Fractional Boundary Layer Flow: Lie Symmetry Analysis and Numerical Solution

Author

Listed:
  • Alessandra Jannelli

    (Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, 98166 Messina, Italy
    These authors contributed equally to this work.)

  • Maria Paola Speciale

    (Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, 98166 Messina, Italy
    These authors contributed equally to this work.)

Abstract

In this paper, we present a fractional version of the Sakiadis flow described by a nonlinear two-point fractional boundary value problem on a semi-infinite interval, in terms of the Caputo derivative. We derive the fractional Sakiadis model by substituting, in the classical Prandtl boundary layer equations, the second derivative with a fractional-order derivative by the Caputo operator. By using the Lie symmetry analysis, we reduce the fractional partial differential equations to a fractional ordinary differential equation, and, then, a finite difference method on quasi-uniform grids, with a suitable variation of the classical L1 approximation formula for the Caputo fractional derivative, is proposed. Finally, highly accurate numerical solutions are reported.

Suggested Citation

  • Alessandra Jannelli & Maria Paola Speciale, 2024. "Fractional Boundary Layer Flow: Lie Symmetry Analysis and Numerical Solution," Mathematics, MDPI, vol. 12(2), pages 1-10, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:184-:d:1314142
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/2/184/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/2/184/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jannelli, Alessandra, 2024. "A finite difference method on quasi-uniform grids for the fractional boundary-layer Blasius flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 382-398.
    2. Iskenderoglu, Gulistan & Kaya, Dogan, 2020. "Symmetry analysis of initial and boundary value problems for fractional differential equations in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Alsaedi & Amjad F. Albideewi & Sotiris K. Ntouyas & Bashir Ahmad, 2020. "On Caputo–Riemann–Liouville Type Fractional Integro-Differential Equations with Multi-Point Sub-Strip Boundary Conditions," Mathematics, MDPI, vol. 8(11), pages 1-14, October.
    2. Natalia Dilna & Michal Fečkan, 2022. "Exact Solvability Conditions for the Non-Local Initial Value Problem for Systems of Linear Fractional Functional Differential Equations," Mathematics, MDPI, vol. 10(10), pages 1-15, May.
    3. Zhang, Zhi-Yong & Liu, Cheng-Bao, 2022. "Leibniz-type rule of variable-order fractional derivative and application to build Lie symmetry framework," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    4. Kucche, Kishor D. & Sutar, Sagar T., 2021. "Analysis of nonlinear fractional differential equations involving Atangana-Baleanu-Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:184-:d:1314142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.