IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v131y2020ics0960077919304527.html
   My bibliography  Save this article

Estimating the approximate analytical solution of HIV viral dynamic model by using homotopy analysis method

Author

Listed:
  • Naik, Parvaiz Ahmad
  • Zu, Jian
  • Ghoreishi, Mohammad

Abstract

Viruses have different mechanisms in causing a disease in an organism, which largely depend on the viral species. The recent advancement, through coupling data analysis and mathematical modeling, has allowed the identification and characterization of the nature of the virus. In the present paper, the homotopy analysis method is applied to provide an approximate solution of the basic HIV viral dynamic model describing the viral dynamics in a susceptible population. The proposed method allows for the solution of the governing system of differential equations to be calculated in the form of an infinite series with components which can be easily calculated. The homotopy analysis method utilizes a simple method to adjust and control the convergence region of the infinite series solution by using an auxiliary parameter. By using the homotopy series solutions, firstly, several β−curves using an appropriate ratio are plotted to demonstrate the regions of convergence and the optimum value of ℏ, then the residual and absolute errors are obtained for different values of these regions. Secondly, the residual error functions are applied to show the accuracy of the applied homotopy analysis method. Also, the convergence theorem of homotopy analysis method for the HIV viral dynamic model is proved. Mathematica software is used for the calculations and numerical results. The results obtained show the effectiveness and strength of the homotopy analysis method.

Suggested Citation

  • Naik, Parvaiz Ahmad & Zu, Jian & Ghoreishi, Mohammad, 2020. "Estimating the approximate analytical solution of HIV viral dynamic model by using homotopy analysis method," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
  • Handle: RePEc:eee:chsofr:v:131:y:2020:i:c:s0960077919304527
    DOI: 10.1016/j.chaos.2019.109500
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919304527
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dubey, Preeti & Dubey, Uma S. & Dubey, Balram, 2018. "Modeling the role of acquired immune response and antiretroviral therapy in the dynamics of HIV infection," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 144(C), pages 120-137.
    2. Sardanyés, Josep & Rodrigues, Carla & Januário, Cristina & Martins, Nuno & Gil-Gómez, Gabriel & Duarte, Jorge, 2015. "Activation of effector immune cells promotes tumor stochastic extinction: A homotopy analysis approach," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 484-495.
    3. Mohammad Ghoreishi & A. I. B. Md. Ismail & Abdur Rashid, 2013. "On the Convergence of the Homotopy Analysis Method for Inner-Resonance of Tangent Nonlinear Cushioning Packaging System with Critical Components," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-10, November.
    4. Alan S. Perelson & Avidan U. Neumann & Martin Markowitz & John M. Leonard & David D. Ho, 1996. "HIV-1 Dynamics In Vivo: Virion Clearance Rate, Infected Cell Lifespan, and Viral Generation Time," Working Papers 96-02-004, Santa Fe Institute.
    5. Tae-Wook Chun & Lucy Carruth & Diana Finzi & Xuefei Shen & Joseph A. DiGiuseppe & Harry Taylor & Monika Hermankova & Karen Chadwick & Joseph Margolick & Thomas C. Quinn & Yen-Hong Kuo & Ronald Brookme, 1997. "Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection," Nature, Nature, vol. 387(6629), pages 183-188, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Essam R. El-Zahar & Ghaliah F. Al-Boqami & Haifa S. Al-Juaydi, 2024. "Approximate Analytical Solutions for Strongly Coupled Systems of Singularly Perturbed Convection–Diffusion Problems," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
    2. Samad Noeiaghdam & Sanda Micula, 2021. "Dynamical Strategy to Control the Accuracy of the Nonlinear Bio-Mathematical Model of Malaria Infection," Mathematics, MDPI, vol. 9(9), pages 1-24, May.
    3. Naik, Parvaiz Ahmad & Zu, Jian & Owolabi, Kolade M., 2020. "Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Liu, Tao, 2022. "Porosity reconstruction based on Biot elastic model of porous media by homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    5. Naik, Parvaiz Ahmad & Owolabi, Kolade M. & Yavuz, Mehmet & Zu, Jian, 2020. "Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iraj Hosseini & Feilim Mac Gabhann, 2012. "Multi-Scale Modeling of HIV Infection in vitro and APOBEC3G-Based Anti-Retroviral Therapy," PLOS Computational Biology, Public Library of Science, vol. 8(2), pages 1-17, February.
    2. González, Ramón E.R. & Coutinho, Sérgio & Zorzenon dos Santos, Rita Maria & de Figueirêdo, Pedro Hugo, 2013. "Dynamics of the HIV infection under antiretroviral therapy: A cellular automata approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4701-4716.
    3. Sutimin, & Wijaya, Karunia Putra & Páez Chávez, Joseph & Tian, Tianhai, 2021. "An in-host HIV-1 infection model incorporating quiescent and activated CD4+ T cells as well as CTL response," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    4. E Fabian Cardozo & Adriana Andrade & John W Mellors & Daniel R Kuritzkes & Alan S Perelson & Ruy M Ribeiro, 2017. "Treatment with integrase inhibitor suggests a new interpretation of HIV RNA decay curves that reveals a subset of cells with slow integration," PLOS Pathogens, Public Library of Science, vol. 13(7), pages 1-18, July.
    5. A. M. Elaiw & N. H. AlShamrani & E. Dahy & A. A. Abdellatif & Aeshah A. Raezah, 2023. "Effect of Macrophages and Latent Reservoirs on the Dynamics of HTLV-I and HIV-1 Coinfection," Mathematics, MDPI, vol. 11(3), pages 1-26, January.
    6. Yu Shi & Zizhao Zhang & Weng Kee Wong, 2019. "Particle swarm based algorithms for finding locally and Bayesian D-optimal designs," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-17, December.
    7. Wang, Jinliang & Guo, Min & Liu, Xianning & Zhao, Zhitao, 2016. "Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 149-161.
    8. Li, Wei & Zhang, Ying & Huang, Dongmei & Rajic, Vesna, 2022. "Study on stationary probability density of a stochastic tumor-immune model with simulation by ANN algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    9. Heffernan, J.M. & Keeling, M.J., 2008. "An in-host model of acute infection: Measles as a case study," Theoretical Population Biology, Elsevier, vol. 73(1), pages 134-147.
    10. Singh, Harendra, 2021. "Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    11. Xu, Jinhu & Geng, Yan & Zhou, Yicang, 2017. "Global dynamics for an age-structured HIV virus infection model with cellular infection and antiretroviral therapy," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 62-83.
    12. Caroline Dufour & Corentin Richard & Marion Pardons & Marta Massanella & Antoine Ackaoui & Ben Murrell & Bertrand Routy & Réjean Thomas & Jean-Pierre Routy & Rémi Fromentin & Nicolas Chomont, 2023. "Phenotypic characterization of single CD4+ T cells harboring genetically intact and inducible HIV genomes," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Jianwei Chen, 2010. "Modelling long‐term human immunodeficiency virus dynamic models with application to acquired immune deficiency syndrome clinical study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(5), pages 805-820, November.
    14. Musharif Ahmed & Muhammad Aamer Saleem & Muhammad Zubair & Ijaz Mansoor Qureshi & Saad Zafar, 2022. "Stability analysis and memetic computation using differential evolution for in-host HIV model," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(1), pages 76-91, March.
    15. Dubey, Preeti & Dubey, Uma S. & Dubey, Balram, 2018. "Modeling the role of acquired immune response and antiretroviral therapy in the dynamics of HIV infection," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 144(C), pages 120-137.
    16. Yang, Junyuan & Wang, Xiaoyan, 2019. "Dynamics and asymptotical profiles of an age-structured viral infection model with spatial diffusion," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 236-254.
    17. Daniel B. Reeves & Christian Gaebler & Thiago Y. Oliveira & Michael J. Peluso & Joshua T. Schiffer & Lillian B. Cohn & Steven G. Deeks & Michel C. Nussenzweig, 2023. "Impact of misclassified defective proviruses on HIV reservoir measurements," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Jessica M Conway & Alan S Perelson & Jonathan Z Li, 2019. "Predictions of time to HIV viral rebound following ART suspension that incorporate personal biomarkers," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-26, July.
    19. Naik, Parvaiz Ahmad & Zu, Jian & Owolabi, Kolade M., 2020. "Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    20. Rebecca M. D'Amato & Richard T. D'Aquila & Lawrence M. Wein, 2000. "Management of Antiretroviral Therapy for HIV Infection: Analyzing When to Change Therapy," Management Science, INFORMS, vol. 46(9), pages 1200-1213, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:131:y:2020:i:c:s0960077919304527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.