IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i2p277-d1319357.html
   My bibliography  Save this article

Approximate Analytical Solutions for Strongly Coupled Systems of Singularly Perturbed Convection–Diffusion Problems

Author

Listed:
  • Essam R. El-Zahar

    (Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
    Department of Basic Engineering Sciences, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt)

  • Ghaliah F. Al-Boqami

    (Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia)

  • Haifa S. Al-Juaydi

    (Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia)

Abstract

This work presents a reliable algorithm to obtain approximate analytical solutions for a strongly coupled system of singularly perturbed convection–diffusion problems, which exhibit a boundary layer at one end. The proposed method involves constructing a zero-order asymptotic approximate solution for the original system. This approximation results in the formation of two systems: a boundary layer system with a known analytical solution and a reduced terminal value system, which is solved analytically using an improved residual power series approach. This approach combines the residual power series method with Padé approximation and Laplace transformation, resulting in an approximate analytical solution with higher accuracy compared to the conventional residual power series method. In addition, error estimates are extracted, and illustrative examples are provided to demonstrate the accuracy and effectiveness of the method.

Suggested Citation

  • Essam R. El-Zahar & Ghaliah F. Al-Boqami & Haifa S. Al-Juaydi, 2024. "Approximate Analytical Solutions for Strongly Coupled Systems of Singularly Perturbed Convection–Diffusion Problems," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:277-:d:1319357
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/2/277/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/2/277/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Essam R. El-Zahar, 2016. "Piecewise Approximate Analytical Solutions of High-Order Singular Perturbation Problems with a Discontinuous Source Term," International Journal of Differential Equations, Hindawi, vol. 2016, pages 1-12, November.
    2. Mubashir Qayyum & Qursam Fatima & Muhammad Sohail & Essam R. El-Zahar & K. C. Gokul & Angel Manuel Ramos, 2022. "Extended Residual Power Series Algorithm for Boundary Value Problems," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-14, September.
    3. Lufeng Yang, 2019. "Rational Spectral Collocation Combined with the Singularity Separated Method for a System of Singularly Perturbed Boundary Value Problems," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-12, November.
    4. Fang Chen & Qing-Quan Liu, 2015. "Adomian Decomposition Method Combined with Padé Approximation and Laplace Transform for Solving a Model of HIV Infection of CD4 + T Cells," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-7, September.
    5. Naik, Parvaiz Ahmad & Zu, Jian & Ghoreishi, Mohammad, 2020. "Estimating the approximate analytical solution of HIV viral dynamic model by using homotopy analysis method," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    6. Chein-Shan Liu & Essam R. El-Zahar & Chih-Wen Chang, 2022. "Higher-Order Asymptotic Numerical Solutions for Singularly Perturbed Problems with Variable Coefficients," Mathematics, MDPI, vol. 10(15), pages 1-20, August.
    7. Brahim Benhammouda & Hector Vazquez-Leal & Luis Hernandez-Martinez, 2014. "Modified Differential Transform Method for Solving the Model of Pollution for a System of Lakes," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-12, September.
    8. Brahim Benhammouda & Hector Vazquez-Leal & Arturo Sarmiento-Reyes, 2014. "Modified Reduced Differential Transform Method for Partial Differential-Algebraic Equations," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Alam, M. Shamsul & Huq, M. Ashraful & Hasan, M. Kamrul & Rahman, M. Saifur, 2021. "A new technique for solving a class of strongly nonlinear oscillatory equations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Naik, Parvaiz Ahmad & Zu, Jian & Owolabi, Kolade M., 2020. "Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Kanwal, Tanzeela & Hussain, Azhar & Avcı, İbrahim & Etemad, Sina & Rezapour, Shahram & Torres, Delfim F.M., 2024. "Dynamics of a model of polluted lakes via fractal–fractional operators with two different numerical algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Naik, Parvaiz Ahmad & Owolabi, Kolade M. & Yavuz, Mehmet & Zu, Jian, 2020. "Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Samad Noeiaghdam & Sanda Micula, 2021. "Dynamical Strategy to Control the Accuracy of the Nonlinear Bio-Mathematical Model of Malaria Infection," Mathematics, MDPI, vol. 9(9), pages 1-24, May.
    7. BİLDİK, Necdet & DENİZ, Sinan, 2019. "A new fractional analysis on the polluted lakes system," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 17-24.
    8. Essam R. El-Zahar & José Tenreiro Machado & Abdelhalim Ebaid, 2019. "A New Generalized Taylor-Like Explicit Method for Stiff Ordinary Differential Equations," Mathematics, MDPI, vol. 7(12), pages 1-18, December.
    9. Liu, Tao, 2022. "Porosity reconstruction based on Biot elastic model of porous media by homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:277-:d:1319357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.