IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v393y2014icp286-296.html
   My bibliography  Save this article

Influence of the interaction range on the thermostatistics of a classical many-body system

Author

Listed:
  • Cirto, Leonardo J.L.
  • Assis, Vladimir R.V.
  • Tsallis, Constantino

Abstract

We numerically study a one-dimensional system of N classical localized planar rotators coupled through interactions which decay with distance as 1/rα (α≥0). The approach is a first principle one (i.e., based on Newton’s law), and yields the probability distribution of momenta. For α large enough and N≫1 we observe, for longstanding states, the Maxwellian distribution, landmark of Boltzmann–Gibbs thermostatistics. But, for α small or comparable to unity, we observe instead robust fat-tailed distributions that are quite well fitted with q-Gaussians. These distributions extremize, under appropriate simple constraints, the nonadditive entropy Sq upon which nonextensive statistical mechanics is based. The whole scenario appears to be consistent with nonergodicity and with the thesis of the q-generalized Central Limit Theorem.

Suggested Citation

  • Cirto, Leonardo J.L. & Assis, Vladimir R.V. & Tsallis, Constantino, 2014. "Influence of the interaction range on the thermostatistics of a classical many-body system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 286-296.
  • Handle: RePEc:eee:phsmap:v:393:y:2014:i:c:p:286-296
    DOI: 10.1016/j.physa.2013.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113008327
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P.-H. Chavanis & A. Campa, 2010. "Inhomogeneous Tsallis distributions in the HMF model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 76(4), pages 581-611, August.
    2. Pluchino, Alessandro & Rapisarda, Andrea & Tsallis, Constantino, 2008. "A closer look at the indications of q-generalized Central Limit Theorem behavior in quasi-stationary states of the HMF model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3121-3128.
    3. Miritello, Giovanna & Pluchino, Alessandro & Rapisarda, Andrea, 2009. "Central limit behavior in the Kuramoto model at the “edge of chaos”," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(23), pages 4818-4826.
    4. de Souza, AndréM.C. & Tsallis, Constantino, 1997. "Student's t- and r-distributions: Unified derivation from an entropic variational principle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 236(1), pages 52-57.
    5. Upadhyaya, Arpita & Rieu, Jean-Paul & Glazier, James A. & Sawada, Yasuji, 2001. "Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 293(3), pages 549-558.
    6. Tsallis, Constantino & Mendes, RenioS. & Plastino, A.R., 1998. "The role of constraints within generalized nonextensive statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 534-554.
    7. V. Schwämmle & F. D. Nobre & C. Tsallis, 2008. "q-Gaussians in the porous-medium equation: stability and time evolution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 66(4), pages 537-546, December.
    8. Rego, Henio H.A & Lucena, Liacir S & da Silva, Luciano R & Tsallis, Constantino, 1999. "Crossover from extensive to nonextensive behavior driven by long-range d=1 bond percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 266(1), pages 42-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zamora, Dario Javier & Tsallis, Constantino, 2022. "Probabilistic models with nonlocal correlations: Numerical evidence of q-Large Deviation Theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    2. Alves, L.G.A. & Ribeiro, H.V. & Santos, M.A.F. & Mendes, R.S. & Lenzi, E.K., 2015. "Solutions for a q-generalized Schrödinger equation of entangled interacting particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 35-44.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. dos Santos, Maike A.F., 2019. "Analytic approaches of the anomalous diffusion: A review," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 86-96.
    2. Vignat, Christophe & Naudts, Jan, 2005. "Stability of families of probability distributions under reduction of the number of degrees of freedom," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 296-302.
    3. Atenas, Boris & Curilef, Sergio, 2021. "A statistical description for the Quasi-Stationary-States of the dipole-type Hamiltonian Mean Field Model based on a family of Vlasov solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    4. Priscila C A da Silva & Tiago V Rosembach & Anésia A Santos & Márcio S Rocha & Marcelo L Martins, 2014. "Normal and Tumoral Melanocytes Exhibit q-Gaussian Random Search Patterns," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    5. Naif Alotaibi & A. S. Al-Moisheer & Ibrahim Elbatal & Mansour Shrahili & Mohammed Elgarhy & Ehab M. Almetwally, 2023. "Half Logistic Inverted Nadarajah–Haghighi Distribution under Ranked Set Sampling with Applications," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    6. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    7. da Silva, Sérgio Luiz Eduardo Ferreira, 2021. "Newton’s cooling law in generalised statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    8. Masi, Marco, 2007. "On the extended Kolmogorov–Nagumo information-entropy theory, the q→1/q duality and its possible implications for a non-extensive two-dimensional Ising model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 67-78.
    9. Deeb, Omar El, 2023. "Entropic spatial auto-correlation of voter uncertainty and voter transitions in parliamentary elections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    10. Zhenpeng Li & Xijin Tang & Zhenjie Hong, 2022. "Collective attention dynamic induced by novelty decay," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(8), pages 1-11, August.
    11. Ilya Yurchenko & Joao Marcos Vensi Basso & Vladyslav Serhiiovych Syrotenko & Cristian Staii, 2019. "Anomalous diffusion for neuronal growth on surfaces with controlled geometries," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-21, May.
    12. Gayen, Atin & Kumar, M. Ashok, 2021. "Projection theorems and estimating equations for power-law models," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    13. Ou, Congjie & Huang, Zhifu & Chen, Jincan & El Kaabouchi, A. & Nivanen, L. & Le Méhauté, A. & Wang, Qiuping A., 2009. "A basic problem in the correlations between statistics and thermodynamics," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2313-2318.
    14. Nelson, Kenric P. & Umarov, Sabir R. & Kon, Mark A., 2017. "On the average uncertainty for systems with nonlinear coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 30-43.
    15. Meyer-Gohde, Alexander, 2019. "Generalized entropy and model uncertainty," Journal of Economic Theory, Elsevier, vol. 183(C), pages 312-343.
    16. Pintarelli, María B. & Vericat, Fernando, 2003. "Generalized Hausdorff inverse moment problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 568-588.
    17. Alves, L.G.A. & Ribeiro, H.V. & Santos, M.A.F. & Mendes, R.S. & Lenzi, E.K., 2015. "Solutions for a q-generalized Schrödinger equation of entangled interacting particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 35-44.
    18. Telesca, Luciano, 2010. "Nonextensive analysis of seismic sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1911-1914.
    19. Qi, Jie & Rong, Zhihai, 2013. "The emergence of scaling laws search dynamics in a particle swarm optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1522-1531.
    20. Suyari, Hiroki & Wada, Tatsuaki, 2008. "Multiplicative duality, q-triplet and (μ,ν,q)-relation derived from the one-to-one correspondence between the (μ,ν)-multinomial coefficient and Tsallis entropy Sq," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 71-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:393:y:2014:i:c:p:286-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.