Fractal Stochastic Processes on Thin Cantor-Like Sets
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zunino, L. & Pérez, D.G. & Kowalski, A. & Martín, M.T. & Garavaglia, M. & Plastino, A. & Rosso, O.A., 2008. "Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6057-6068.
- Rocco, Andrea & West, Bruce J., 1999. "Fractional calculus and the evolution of fractal phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 265(3), pages 535-546.
- dos Santos, Maike A.F., 2019. "Analytic approaches of the anomalous diffusion: A review," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 86-96.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Khalili Golmankhaneh, Alireza & Ontiveros, Lilián Aurora Ochoa, 2023. "Fractal calculus approach to diffusion on fractal combs," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
- Ayse Gertik & Aykut Karaman, 2023. "The Fractal Approach in the Biomimetic Urban Design: Le Corbusier and Patrick Schumacher," Sustainability, MDPI, vol. 15(9), pages 1-21, May.
- Takahashi, Hiroshi & Tamura, Yozo, 2023. "Diffusion processes in Brownian environments on disconnected selfsimilar fractal sets in R," Statistics & Probability Letters, Elsevier, vol. 193(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- dos Santos, M.A.F. & Colombo, E.H. & Anteneodo, C., 2021. "Random diffusivity scenarios behind anomalous non-Gaussian diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M. & Neto, Jusie S.P., 2021. "Macroeconophysics indicator of economic efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
- Zhao, Xiaojun & Ji, Mengfan & Zhang, Na & Shang, Pengjian, 2020. "Permutation transition entropy: Measuring the dynamical complexity of financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Shi, Hong-Da & Du, Lu-Chun & Huang, Fei-Jie & Guo, Wei, 2022. "Collective topological active particles: Non-ergodic superdiffusion and ageing in complex environments," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Maike A. F. dos Santos, 2019. "Mittag–Leffler Memory Kernel in Lévy Flights," Mathematics, MDPI, vol. 7(9), pages 1-13, August.
- Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
- Rosso, Osvaldo A. & Craig, Hugh & Moscato, Pablo, 2009. "Shakespeare and other English Renaissance authors as characterized by Information Theory complexity quantifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 916-926.
- Potirakis, Stelios M. & Zitis, Pavlos I. & Eftaxias, Konstantinos, 2013. "Dynamical analogy between economical crisis and earthquake dynamics within the nonextensive statistical mechanics framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2940-2954.
- Zhang, Yongping & Shang, Pengjian, 2018. "Refined composite multiscale weighted-permutation entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 189-199.
- Ahmed, E. & Elgazzar, A.S., 2007. "On fractional order differential equations model for nonlocal epidemics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 607-614.
- Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
- Wei, Q. & Yang, S. & Zhou, H.W. & Zhang, S.Q. & Li, X.N. & Hou, W., 2021. "Fractional diffusion models for radionuclide anomalous transport in geological repository systems," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
- Olivares, Felipe & Zunino, Luciano, 2020. "Multiscale dynamics under the lens of permutation entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
- Eftaxias, K., 2010. "Footprints of nonextensive Tsallis statistics, selfaffinity and universality in the preparation of the L’Aquila earthquake hidden in a pre-seismic EM emission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 133-140.
- Rosso, Osvaldo A. & De Micco, Luciana & Plastino, A. & Larrondo, Hilda A., 2010. "Info-quantifiers’ map-characterization revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4604-4612.
- Wang, Peng & Huo, Jie & Wang, Xu-Ming & Wang, Bing-Hong, 2022. "Diffusion and memory effect in a stochastic process and the correspondence to an information propagation in a social system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
- Liu, Zhengli & Shang, Pengjian & Wang, Yuanyuan, 2020. "Characterization of time series through information quantifiers," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
- Mateos, Diego M. & Zozor, Steeve & Olivares, Felipe, 2020. "Contrasting stochasticity with chaos in a permutation Lempel–Ziv complexity — Shannon entropy plane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
- Ngueuteu Mbouna, S.G. & Banerjee, Tanmoy & Yamapi, René & Woafo, Paul, 2022. "Diverse chimera and symmetry-breaking patterns induced by fractional derivation effect in a network of Stuart-Landau oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Serrano, Alfredo Blanco & Allen-Perkins, Alfonso & Andrade, Roberto Fernandes Silva, 2022. "Efficient approach to time-dependent super-diffusive Lévy random walks on finite 2D-tori using circulant analogues," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
More about this item
Keywords
fractal calculus; fractional Brownian motion; fractal derivative; fractal stochastic process; Brownian motion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:6:p:613-:d:516971. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.